Skip to main content

Comparisons of Substrates Responsible for Atrial Versus Ventricular Fibrillation

  • Chapter
  • First Online:
Electrical Diseases of the Heart

Abstract

The fundamental mechanisms underlying fibrillation have long been debated. The classical notion of multiple circuit reentry has been challenged by recent ideas suggesting that in some cases a single high-frequency rotor or even a rapidly-firing focus can underlie fibrillation that can cause wave breakup and fibrillation. There is increasing awareness that arrhythmias do not usually begin in perfectly normal tissue, but require changes in tissue structure or function that constitute the arrhythmic substrate. In this chapter, atrial and ventricular changes (including alterations in ion channel function, intercellular coupling, and fibrosis) playing a role in fibrillation are reviewed. We focus particularly on ischemic substrates, congestive heart failure remodeling, genetic factors, neuroregulatory determinants, and arrhythmic remodeling. Atrial (AF) and ventricular (VF) fibrillation-substrates have many features in common but also a number of important specific differences. Consideration of these mechanistic determinants will lead to improved understanding of the pathophysiology of AF and VF, and ultimately to improve arrhythmia-specific therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jalife J, Anumonwo JM, Berenfeld O. Toward an understanding of the molecular mechanisms of ventricular fibrillation. J Interv Card Electrophy­siol. 2003;9(2):119–29.

    Article  PubMed  Google Scholar 

  2. Oral H. Mechanisms of atrial fibrillation: lessons from studies in patients. Prog Cardiovasc Dis. 2005;48(1):29–40.

    Article  PubMed  Google Scholar 

  3. Nattel S. New ideas about atrial fibrillation 50 years on. Nature. 2002;415(6868):219–26.

    Article  PubMed  CAS  Google Scholar 

  4. Jalife J, Berenfeld O, Mansour M. Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovasc Res. 2002;54(2):204–16.

    Article  PubMed  CAS  Google Scholar 

  5. Kneller J et al. Cholinergic atrial fibrillation in a computer model of a two- dimensional sheet of canine atrial cells with realistic ionic properties. Circ Res. 2002;90(9):E73–87.

    Article  PubMed  CAS  Google Scholar 

  6. Winfree AT. Electrical instability in cardiac muscle: phase singularities and rotors. J Theor Biol. 1989;138(3):353–405.

    Article  PubMed  CAS  Google Scholar 

  7. Zou R et al. Substrate size as a determinant of fibrillatory activity maintenance in a mathematical model of canine atrium. Am J Physiol Heart Circ Physiol. 2005;289(3):H1002–12.

    Article  PubMed  CAS  Google Scholar 

  8. Comtois P, Nattel S. Impact of tissue geometry on simulated cholinergic atrial fibrillation: a modeling study. Chaos. 2011;21(1):013108.

    Article  PubMed  Google Scholar 

  9. Comtois P, Kneller J, Nattel S. Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry. Europace. 2005;7 Suppl 2:10–20.

    Article  PubMed  Google Scholar 

  10. Karma A. Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys Rev Lett. 1993;71(7):1103–6.

    Article  PubMed  Google Scholar 

  11. Fareh S, Villemaire C, Nattel S. Importance of refractoriness heterogeneity in the enhanced vulnerability to atrial fibrillation induction caused by tachycardia-induced atrial electrical remodeling. Circulation. 1998;98(20):2202–9.

    Article  PubMed  CAS  Google Scholar 

  12. Miyauchi Y et al. Altered atrial electrical restitution and heterogeneous sympathetic hyperinnervation in hearts with chronic left ventricular myocardial infarction: implications for atrial fibrillation. Circulation. 2003;108(3):360–6.

    Article  PubMed  Google Scholar 

  13. Vigmond EJ et al. The effect of vagally induced dispersion of action potential duration on atrial arrhythmogenesis. Heart Rhythm. 2004;1(3):334–44.

    Article  PubMed  Google Scholar 

  14. Wijffels MC et al. Widening of the excitable gap during pharmacological cardioversion of atrial fibrillation in the goat: effects of cibenzoline, hydroquinidine, flecainide, and d-sotalol. Circulation. 2000;102(2):260–7.

    Article  PubMed  CAS  Google Scholar 

  15. Kneller J et al. Mechanisms of atrial fibrillation termination by pure sodium channel blockade in an ionically-realistic mathematical model. Circ Res. 2005;96(5):e35–47.

    Article  PubMed  CAS  Google Scholar 

  16. Comtois P et al. Mechanisms of atrial fibrillation termination by rapidly unbinding Na+ channel blockers: insights from mathematical models and experimental correlates. Am J Physiol Heart Circ Physiol. 2008;295(4):H1489–504.

    Article  PubMed  CAS  Google Scholar 

  17. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N Engl J Med. 1989;32(6):406–12.

    Google Scholar 

  18. Qu Z, Weiss JN. Effects of Na(+) and K(+) channel blockade on vulnerability to and termination of fibrillation in simulated normal cardiac tissue. Am J Physiol Heart Circ Physiol. 2005;289(4):H1692–701.

    Article  PubMed  CAS  Google Scholar 

  19. Kim YH et al. Role of papillary muscle in the generation and maintenance of reentry during ventricular tachycardia and fibrillation in isolated swine right ventricle. Circulation. 1999;100(13):1450–9.

    Article  PubMed  CAS  Google Scholar 

  20. Pruvot EJ et al. Role of calcium cycling versus restitution in the mechanism of repolarization alternans. Circ Res. 2004;94(8):1083–90.

    Article  PubMed  CAS  Google Scholar 

  21. Weiss JN et al. From pulsus to pulseless: the saga of cardiac alternans. Circ Res. 2006;98(10):1244–53.

    Article  PubMed  CAS  Google Scholar 

  22. Zaitsev AV et al. Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ Res. 2000;86(4):408–17.

    Article  PubMed  CAS  Google Scholar 

  23. Janse MJ et al. Repolarization gradients in the canine left ventricle before and after induction of short-term cardiac memory. Circulation. 2005;112(12):1711–8.

    Article  PubMed  Google Scholar 

  24. Fenton F, Karma A. Fiber-rotation-induced vortex turbulence in thick myocardium. Phys Rev Lett. 1998;81(2):481–4.

    Article  CAS  Google Scholar 

  25. Panfilov AV, Keener JP. Reentry in 3-dimensional Fitzhugh-Nagumo medium with rotational anisotropy. Physica D. 1995;84(3–4):545–52.

    Article  Google Scholar 

  26. Qu Z et al. Scroll wave dynamics in a three-­dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation. Biophys J. 2000;78(6):2761–75.

    Article  PubMed  CAS  Google Scholar 

  27. Hurwitz JL, Josephson ME. Sudden cardiac death in patients with chronic coronary heart disease. Circulation. 1992;85(1 Suppl):I43–9.

    PubMed  CAS  Google Scholar 

  28. Henkel DM et al. Ventricular arrhythmias after acute myocardial infarction: a 20-year community study. Am Heart J. 2006;151(4):806–12.

    Article  PubMed  Google Scholar 

  29. Wong CK et al. Significance of atrial fibrillation during acute myocardial infarction, and its current management: insights from the GUSTO-3 trial. Card Electrophysiol Rev. 2003;7(3):201–7.

    Article  PubMed  Google Scholar 

  30. Allessie MA et al. Pathophysiology and prevention of atrial fibrillation. Circulation. 2001;103(5):769–77.

    Article  PubMed  CAS  Google Scholar 

  31. Sinno H et al. Atrial ischemia promotes atrial fibrillation in dogs. Circulation. 2003;107(14):1930–6.

    Article  PubMed  Google Scholar 

  32. Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev. 1989;69(4):1049–169.

    PubMed  CAS  Google Scholar 

  33. Nishida K et al. Mechanisms of atrial tachyarrhythmias associated with coronary artery occlusion in a chronic canine model. Circulation. 2011;123(2):137–46.

    Article  PubMed  CAS  Google Scholar 

  34. Boixel C et al. Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat. J Am Coll Cardiol. 2003;42(2):336–44.

    Article  PubMed  CAS  Google Scholar 

  35. Wit AL, Janse MJ. Experimental models of ventricular tachycardia and fibrillation caused by ischemia and infarction. Circulation. 1992;85(1 Suppl):I32–42.

    PubMed  CAS  Google Scholar 

  36. Lue WM, Boyden PA. Abnormal electrical properties of myocytes from chronically infarcted canine heart. Alterations in Vmax and the transient outward current. Circulation. 1992;85(3):1175–88.

    Article  PubMed  CAS  Google Scholar 

  37. Cabo C, Boyden PA. Electrical remodeling of the epicardial border zone in the canine infarcted heart: a computational analysis. Am J Physiol. 2003;284(1):H372–84.

    CAS  Google Scholar 

  38. Dun W, Boyden PA. Diverse phenotypes of outward currents in cells that have survived in the 5-day-infarcted heart. Am J Physiol Heart Circ Physiol. 2005;289(2):H667–73.

    Article  PubMed  CAS  Google Scholar 

  39. Gough WB, Hu D, El-Sherif N. Effects of clofilium on ischemic subendocardial Purkinje fibers 1 day postinfarction. J Am Coll Cardiol. 1988;11(2):431–7.

    Article  PubMed  CAS  Google Scholar 

  40. Dun W et al. Dynamic remodeling of K+ and Ca2+ currents in cells that survived in the epicardial border zone of canine healed infarcted heart. Am J Physiol Heart Circ Physiol. 2004;287(3):H1046–54.

    Article  PubMed  CAS  Google Scholar 

  41. Pinto JM et al. Regional gradation of L-type calcium currents in the feline heart with a healed myocardial infarct. J Cardiovasc Electrophysiol. 1997;8(5):548–60.

    Article  PubMed  CAS  Google Scholar 

  42. Litwin SE, Zhang D, Bridge JH. Dyssynchronous Ca(2+) sparks in myocytes from infarcted hearts. Circ Res. 2000;87(11):1040–7.

    Article  PubMed  CAS  Google Scholar 

  43. Boyden PA et al. 2APB- and JTV519(K201)-sensitive micro Ca2+ waves in arrhythmogenic Purkinje cells that survive in infarcted canine heart. Heart Rhythm. 2004;1(2):218–26.

    Article  PubMed  Google Scholar 

  44. Pu J, Robinson RB, Boyden PA. Abnormalities in Ca(i)handling in myocytes that survive in the infarcted heart are not just due to alterations in repolarization. J Mol Cell Cardiol. 2000;32(8):1509–23.

    Article  PubMed  CAS  Google Scholar 

  45. de Bakker JM et al. Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: electrophysiologic and anatomic correlation. Circulation. 1988;77(3):589–606.

    Article  PubMed  Google Scholar 

  46. Spear JF, Michelson EL, Moore EN. Reduced space constant in slowly conducting regions of chronically infarcted canine myocardium. Circ Res. 1983;53(2):176–85.

    Article  PubMed  CAS  Google Scholar 

  47. Pu J, Boyden PA. Alterations of Na+ currents in myocytes from epicardial border zone of the infarcted heart. A possible ionic mechanism for reduced excitability and postrepolarization refractoriness. Circ Res. 1997;81(1):110–9.

    Article  PubMed  CAS  Google Scholar 

  48. Peters NS. Myocardial gap junction organization in ischemia and infarction. Microsc Res Tech. 1995;31(5):375–86.

    Article  PubMed  CAS  Google Scholar 

  49. Peters NS et al. Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation. 1997;95(4):988–96.

    Article  PubMed  CAS  Google Scholar 

  50. Yao JA et al. Remodeling of gap junctional channel function in epicardial border zone of healing canine infarcts. Circ Res. 2003;92(4):437–43.

    Article  PubMed  CAS  Google Scholar 

  51. Kjekshus J. Arrhythmias and mortality in congestive heart failure. Am J Cardiol. 1990;65(19):42I–8.

    Article  PubMed  CAS  Google Scholar 

  52. Ehrlich JR, Nattel S, Hohnloser SH. Atrial fibrillation and congestive heart failure: specific considerations at the intersection of two common and important cardiac disease sets. J Cardiovasc Electrophysiol. 2002;13(4):399–405.

    Article  PubMed  Google Scholar 

  53. Zicha S et al. Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc Res. 2005;66(3):472–81.

    Article  PubMed  CAS  Google Scholar 

  54. Verkerk AO et al. Ionic remodeling of sinoatrial node cells by heart failure. Circulation. 2003;108(6):760–6.

    Article  PubMed  Google Scholar 

  55. Han J et al. Temporal dispersion of recovery of excitability in atrium and ventricle as a function of heart rate. Am Heart J. 1966;71(4):481–7.

    Article  PubMed  CAS  Google Scholar 

  56. Goel BG, Han J. Atrial ectopic activity associated with sinus bradycardia. Circulation. 1970;42(5):853–8.

    Article  PubMed  CAS  Google Scholar 

  57. Li D et al. Effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation. 2000;101(22):2631–8.

    Article  PubMed  CAS  Google Scholar 

  58. Fenelon G, Shepard RK, Stambler BS. Focal origin of atrial tachycardia in dogs with rapid ventricular pacing-induced heart failure. J Cardiovasc Electrophysiol. 2003;14(10):1093–102.

    Article  PubMed  Google Scholar 

  59. Stambler BS et al. Characterization of sustained atrial tachycardia in dogs with rapid ventricular pacing-induced heart failure. J Cardiovasc Electrophysiol. 2003;14(5):499–507.

    Article  PubMed  Google Scholar 

  60. Ryu K et al. Mapping of atrial activation during sustained atrial fibrillation in dogs with rapid ventricular pacing induced heart failure: evidence for a role of driver regions. J Cardiovasc Electrophysiol. 2005;16(12):1348–58.

    PubMed  Google Scholar 

  61. Shinagawa K et al. Dynamic nature of atrial fibrillation substrate during development and reversal of heart failure in dogs. Circulation. 2002;105(22):2672–8.

    Article  PubMed  Google Scholar 

  62. Li D et al. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation. 1999;100(1):87–95.

    Article  PubMed  CAS  Google Scholar 

  63. Burstein B et al. Changes in connexin expression and the atrial fibrillation substrate in congestive heart failure. Circ Res. 2009;105(12):1213–22.

    Article  PubMed  CAS  Google Scholar 

  64. Derakhchan K et al. Method for simultaneous ­epicardial and endocardial mapping of in vivo canine heart: application to atrial conduction properties and arrhythmia mechanisms. J Cardiovasc Electrophysiol. 2001;12(5):548–55.

    Article  PubMed  CAS  Google Scholar 

  65. Tanaka K et al. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ Res. 2007;101(8):839–47.

    Article  PubMed  CAS  Google Scholar 

  66. Li GR et al. Ionic current abnormalities associated with prolonged action potentials in cardiomyocytes from diseased human right ventricles. Heart Rhythm. 2004;1(4):460–8.

    Article  PubMed  Google Scholar 

  67. Tsuji Y et al. Potassium channel subunit remodeling in rabbits exposed to long-term bradycardia or tachycardia: discrete arrhythmogenic consequences related to differential delayed-rectifier changes. Circulation. 2006;113(3):345–55.

    Article  PubMed  CAS  Google Scholar 

  68. Tsuji Y et al. Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc Res. 2000;48(2):300–9.

    Article  PubMed  CAS  Google Scholar 

  69. Nuss HB et al. Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. Am J Physiol. 1999;277(1 Pt 2):H80–91.

    PubMed  CAS  Google Scholar 

  70. Pogwizd SM et al. Arrhythmogenesis and ­contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res. 2001;88(11):1159–67.

    Article  PubMed  CAS  Google Scholar 

  71. Xiong W et al. Transmural heterogeneity of Na+−Ca2+ exchange: evidence for differential expression in normal and failing hearts. Circ Res. 2005;97(3):207–9.

    Article  PubMed  CAS  Google Scholar 

  72. Ai X et al. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res. 2005;97(12):1314–22.

    Article  PubMed  CAS  Google Scholar 

  73. Schlotthauer K, Bers DM. Sarcoplasmic reticulum Ca(2+) release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ Res. 2000;87(9):774–80.

    Article  PubMed  CAS  Google Scholar 

  74. Huser J, Blatter LA, Lipsius SL. Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol. 2000;524(Pt 2):415–22.

    Article  PubMed  CAS  Google Scholar 

  75. Kawara T et al. Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation. 2001;104(25):3069–75.

    Article  PubMed  CAS  Google Scholar 

  76. Hanna N et al. Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc Res. 2004;63(2):236–44.

    Article  PubMed  CAS  Google Scholar 

  77. Ai X, Pogwizd SM. Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res. 2005;96(1):54–63.

    Article  PubMed  CAS  Google Scholar 

  78. Akar FG et al. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ Res. 2004;95(7):717–25.

    Article  PubMed  CAS  Google Scholar 

  79. Dupont E et al. Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol. 2001;33(2):359–71.

    Article  PubMed  CAS  Google Scholar 

  80. Poelzing S, Rosenbaum DS. Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol Heart Circ Physiol. 2004;287(4):H1762–70.

    Article  PubMed  CAS  Google Scholar 

  81. Glukhov AV et al. Transmural dispersion of repolarization in failing and nonfailing human ventricle. Circ Res. 2010;106(5):981–91.

    Article  PubMed  CAS  Google Scholar 

  82. Lou Q et al. Transmural heterogeneity and remodeling of ventricular excitation-contraction coupling in human heart failure. Circulation. 2011;123(17):1881–90.

    Article  PubMed  Google Scholar 

  83. Roberts R. Genomics and cardiac arrhythmias. J Am Coll Cardiol. 2006;47(1):9–21.

    Article  PubMed  CAS  Google Scholar 

  84. Hong K et al. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol. 2005;16(4):394–6.

    Article  PubMed  Google Scholar 

  85. Gussak I et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology. 2000;94(2):99–102.

    Article  PubMed  CAS  Google Scholar 

  86. Moss AJ et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation. 1991;84(3):1136–44.

    Article  PubMed  CAS  Google Scholar 

  87. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol. 1992;20(6):1391–6.

    Article  PubMed  CAS  Google Scholar 

  88. Olson TM et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA. 2005;293(4):447–54.

    Article  PubMed  CAS  Google Scholar 

  89. Gaita F et al. Short QT syndrome: a familial cause of sudden death. Circulation. 2003;108(8):965–70.

    Article  PubMed  Google Scholar 

  90. Hong K et al. De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc Res. 2005;68(3):433–40.

    Article  PubMed  CAS  Google Scholar 

  91. Nattel S et al. Mechanisms of atrial fibrillation: lessons from animal models. Prog Cardiovasc Dis. 2005;48(1):9–28.

    Article  PubMed  CAS  Google Scholar 

  92. Chen YH et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003;299(5604):251–4.

    Article  PubMed  CAS  Google Scholar 

  93. Yang Y et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet. 2004;75(5):899–905.

    Article  PubMed  CAS  Google Scholar 

  94. Antzelevitch C et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442–9.

    Article  PubMed  Google Scholar 

  95. Kirchhof P et al. Prolonged atrial action potential durations and polymorphic atrial tachyarrhythmias in patients with long QT syndrome. J Cardiovasc Electrophysiol. 2003;14(10):1027–33.

    Article  PubMed  Google Scholar 

  96. Ehrlich JR et al. Atrial fibrillation-associated minK38G/S polymorphism modulates delayed rectifier current and membrane localization. Cardiovasc Res. 2005;67(3):520–8.

    Article  PubMed  CAS  Google Scholar 

  97. Olson TM et al. Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet. 2006;15(14):2185–91.

    Article  PubMed  CAS  Google Scholar 

  98. Firouzi M et al. Association of human connexin40 gene polymorphisms with atrial vulnerability as a risk factor for idiopathic atrial fibrillation. Circ Res. 2004;95(4):e29–33.

    Article  PubMed  CAS  Google Scholar 

  99. Juang JM et al. The association of human connexin 40 genetic polymorphisms with atrial fibrillation. Int J Cardiol. 2007;116(1):107–12.

    Article  PubMed  Google Scholar 

  100. Gollob MH et al. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med. 2006;354(25):2677–88.

    Article  PubMed  CAS  Google Scholar 

  101. Extramiana F, Antzelevitch C. Amplified transmural dispersion of repolarization as the basis for arrhythmogenesis in a canine ventricular-wedge model of short-QT syndrome. Circulation. 2004;110(24):3661–6.

    Article  PubMed  Google Scholar 

  102. Modell SM, Lehmann MH. The long QT syndrome family of cardiac ion channelopathies: a HuGE review. Genet Med. 2006;8(3):143–55.

    Article  PubMed  CAS  Google Scholar 

  103. Priori SG et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation. 2002;105(11):1342–7.

    Article  PubMed  Google Scholar 

  104. Antzelevitch C et al. Brugada syndrome: from cell to bedside. Curr Probl Cardiol. 2005;30(1):9–54.

    Article  PubMed  Google Scholar 

  105. Eldar M, Pras E, Lahat H. A missense mutation in the CASQ2 gene is associated with autosomal-recessive catecholamine-induced polymorphic ventricular tachycardia. Trends Cardiovasc Med. 2003;13(4):148–51.

    Article  PubMed  CAS  Google Scholar 

  106. Priori SG et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106(1):69–74.

    Article  PubMed  CAS  Google Scholar 

  107. Mohler PJ et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421(6923):634–9.

    Article  PubMed  CAS  Google Scholar 

  108. Mohler PJ et al. A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc Natl Acad Sci U S A. 2004;101(24):9137–42.

    Article  PubMed  CAS  Google Scholar 

  109. Garrey WE. Auricular fibrillation. Physiol Rev. 1924;4:215–50.

    Google Scholar 

  110. Zipes DP et al. Influence of the autonomic nervous system on the genesis of cardiac arrhythmias. Pacing Clin Electrophysiol. 1983;6(5 Pt 2):1210–20.

    Article  PubMed  CAS  Google Scholar 

  111. Alessi R et al. Nonuniform distribution of vagal effects on the atrial refractory period. Am J Physiol. 1958;194(2):406–10.

    PubMed  CAS  Google Scholar 

  112. Coumel P, Suppl A. Paroxysmal atrial fibrillation: a disorder of autonomic tone? Eur Heart J. 1994;15:9–16.

    Article  PubMed  Google Scholar 

  113. Hohnloser SH. Ventricular arrhythmias: antiadrenergic therapy for the patient with coronary artery disease. J Cardiovasc Pharmacol Ther. 2005;10 Suppl 1:S23–31.

    Article  PubMed  CAS  Google Scholar 

  114. Nattel S, Bourne G, Talajic M. Insights into mechanisms of antiarrhythmic drug action from experimental models of atrial fibrillation. J Cardiovasc Electrophysiol. 1997;8(4):469–80.

    Article  PubMed  CAS  Google Scholar 

  115. Liu L, Nattel S. Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. Am J Physiol. 1997;273(2 Pt 2):H805–16.

    PubMed  CAS  Google Scholar 

  116. Arora RC et al. The intrinsic cardiac nervous system in tachycardia induced heart failure. Am J Physiol Regul Integr Comp Physiol. 2003;285(5):R1212–23.

    PubMed  CAS  Google Scholar 

  117. Armour JA, Hageman GR, Randall WC. Arrhythmias induced by local cardiac nerve stimulation. Am J Physiol. 1972;223(5):1068–75.

    PubMed  CAS  Google Scholar 

  118. Schauerte P et al. Focal atrial fibrillation: experimental evidence for a pathophysiologic role of the autonomic nervous system. J Cardiovasc Electro­physiol. 2001;12(5):592–9.

    Article  PubMed  CAS  Google Scholar 

  119. Scherlag BJ et al. Endovascular stimulation within the left pulmonary artery to induce slowing of heart rate and paroxysmal atrial fibrillation. Cardiovasc Res. 2002;54(2):470–5.

    Article  PubMed  CAS  Google Scholar 

  120. Chang CM et al. Nerve sprouting and sympathetic hyperinnervation in a canine model of atrial fibrillation produced by prolonged right atrial pacing. Circulation. 2001;103(1):22–5.

    Article  PubMed  CAS  Google Scholar 

  121. Olgin JE et al. Heterogeneous atrial denervation creates substrate for sustained atrial fibrillation. Circulation. 1998;98(23):2608–14.

    Article  PubMed  CAS  Google Scholar 

  122. Tan AY et al. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation. 2008;118(9):916–25.

    Article  PubMed  Google Scholar 

  123. Swissa M et al. Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol. 2004;43(5):858–64.

    Article  PubMed  Google Scholar 

  124. Cao JM et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000;101(16):1960–9.

    Article  PubMed  CAS  Google Scholar 

  125. Zhou S et al. Modulation of QT interval by cardiac sympathetic nerve sprouting and the mechanisms of ventricular arrhythmia in a canine model of sudden cardiac death. J Cardiovasc Electrophysiol. 2001;12(9):1068–73.

    Article  PubMed  CAS  Google Scholar 

  126. Oh YS et al. Spatial distribution of nerve sprouting after myocardial infarction in mice. Heart Rhythm. 2006;3(6):728–36.

    Article  PubMed  Google Scholar 

  127. Nattel S. Atrial electrophysiological remodeling caused by rapid atrial activation: underlying mechanisms and clinical relevance to atrial fibrillation. Cardiovasc Res. 1999;42(2):298–308.

    Article  PubMed  CAS  Google Scholar 

  128. Wijffels MC et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92(7):1954–68.

    Article  PubMed  CAS  Google Scholar 

  129. Raitt MH et al. Reversal of electrical remodeling after cardioversion of persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2004;15(5):507–12.

    Article  PubMed  Google Scholar 

  130. Patberg KW et al. Cardiac memory: mechanisms and clinical implications. Heart Rhythm. 2005;2(12):1376–82.

    Article  PubMed  Google Scholar 

  131. Morillo CA et al. Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation. 1995;91(5):1588–95.

    Article  PubMed  CAS  Google Scholar 

  132. Yue L et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res. 1997;81(4):512–25.

    Article  PubMed  CAS  Google Scholar 

  133. Van Wagoner DR et al. Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res. 1997;80(6):772–81.

    Article  PubMed  Google Scholar 

  134. Cha TJ et al. Atrial ionic remodeling induced by atrial tachycardia in the presence of congestive heart failure. Circulation. 2004;110(12):1520–6.

    Article  PubMed  Google Scholar 

  135. Qi XY et al. Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current. Circ Res. 2008;103(8):845–54.

    Article  PubMed  CAS  Google Scholar 

  136. Gaspo R et al. Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation. Circ Res. 1997;81(6):1045–52.

    Article  PubMed  CAS  Google Scholar 

  137. Bosch RF et al. Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res. 1999;44(1):121–31.

    Article  PubMed  CAS  Google Scholar 

  138. Sun H et al. Cellular mechanisms of atrial contractile dysfunction caused by sustained atrial tachycardia. Circulation. 1998;98(7):719–27.

    Article  PubMed  CAS  Google Scholar 

  139. Vest JA et al. Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation. 2005;111(16):2025–32.

    Article  PubMed  CAS  Google Scholar 

  140. Hove-Madsen L et al. Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation. 2004;110(11):1358–63.

    Article  PubMed  CAS  Google Scholar 

  141. Kostin S et al. Structural correlate of atrial fibrillation in human patients. Cardiovasc Res. 2002;54(2):361–79.

    Article  PubMed  CAS  Google Scholar 

  142. Polontchouk L et al. Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J Am Coll Cardiol. 2001;38(3):883–91.

    Article  PubMed  CAS  Google Scholar 

  143. van der Velden HM et al. Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovasc Res. 2000;46(3):476–86.

    Article  PubMed  Google Scholar 

  144. Rakovec P, Lajovic J, Dolenc M. Reversible congestive cardiomyopathy due to chronic ventricular tachycardia. Pacing Clin Electrophysiol. 1989;12(4 Pt 1):542–5.

    Article  PubMed  CAS  Google Scholar 

  145. Chugh SS et al. First evidence of premature ventricular complex-induced cardiomyopathy: a potentially reversible cause of heart failure. J Cardiovasc Electrophysiol. 2000;11(3):328–9.

    Article  PubMed  CAS  Google Scholar 

  146. Verma A et al. Prevalence, predictors, and mortality significance of the causative arrhythmia in patients with electrical storm. J Cardiovasc Electrophysiol. 2004;15(11):1265–70.

    Article  PubMed  Google Scholar 

  147. Merillat JC et al. Role of calcium and the calcium channel in the initiation and maintenance of ventricular fibrillation. Circ Res. 1990;67(5):1115–23.

    Article  PubMed  CAS  Google Scholar 

  148. Zaugg CE et al. Ventricular fibrillation-induced intracellular Ca2+ overload causes failed electrical defibrillation and post-shock reinitiation of fibrillation. J Mol Cell Cardiol. 1998;30(11):2183–92.

    Article  PubMed  CAS  Google Scholar 

  149. Zaugg CE et al. Postresuscitation stunning: postfibrillatory myocardial dysfunction caused by reduced myofilament Ca2+ responsiveness after ventricular fibrillation-induced myocyte Ca2+ overload. J Cardiovasc Electrophysiol. 2002;13(10):1017–24.

    Article  PubMed  Google Scholar 

  150. Tsuji Y et al. Ca(2+)-related signaling and protein phosphorylation abnormalities play central roles in a new experimental model of electrical storm. Circulation. 2011;123(20):2192–203.

    Article  PubMed  CAS  Google Scholar 

  151. Tsuji Y et al. Ionic mechanisms of acquired QT prolongation and torsades de pointes in rabbits with chronic complete atrioventricular block. Circulation. 2002;106(15):2012–8.

    Article  PubMed  Google Scholar 

  152. Vos MA et al. Enhanced susceptibility for acquired torsade de pointes arrhythmias in the dog with chronic, complete AV block is related to cardiac hypertrophy and electrical remodeling. Circulation. 1998;98(11):1125–35.

    Article  PubMed  CAS  Google Scholar 

  153. Suto F et al. Ventricular rate determines early bradycardic electrical remodeling. Heart Rhythm. 2005;2(3):293–300.

    Article  PubMed  Google Scholar 

  154. Volders PG et al. Downregulation of delayed rectifier K(+) currents in dogs with chronic complete ­atrioventricular block and acquired torsades de pointes. Circulation. 1999;100(24):2455–61.

    Article  PubMed  CAS  Google Scholar 

  155. Maor N, Weiss D, Lorber A. Torsade de pointes complicating atrioventricular block: report of two cases. Int J Cardiol. 1987;14(2):235–8.

    Article  PubMed  CAS  Google Scholar 

  156. Qi X et al. The calcium/calmodulin/kinase system and arrhythmogenic afterdepolarizations in bradycardia-related acquired long-QT syndrome. Circ Arrhythm Electrophysiol. 2009;2(3):295–304.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement.

Supported by the “Fond de Recherche en Santé du Québec”, the Natural Sciences and Engineering Research Council, the Canadian Institutes of Health Research, and the Mathematics of Information Technology and Complex Systems Network of Centers of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Comtois PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Comtois, P., Burstein, B., Nattel, S. (2013). Comparisons of Substrates Responsible for Atrial Versus Ventricular Fibrillation. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4881-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4881-4_20

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4880-7

  • Online ISBN: 978-1-4471-4881-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics