Skip to main content

Estimation Problems and Randomised Group Algorithms

  • Chapter
  • First Online:
Book cover Probabilistic Group Theory, Combinatorics, and Computing

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2070))

Abstract

This chapter discusses the role of estimation in the design and analysis of randomised algorithms for computing with finite groups.An exposition is given of a variety of different approaches to estimating proportions of important element classes, including geometric methods, and the use of generating functions and the theory of Lie type groups.Numerous results concerning estimation in permutation groups and finite classical groups are surveyed.An application is given to the construction of involution centralisers, a crucial component in the constructive recognition of finite simple groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Translation by Peter M. Neumann, The Queen’s College, University of Oxford.

References

  1. C. Altseimer, A.V. Borovik, Probabilistic Recognition of Orthogonal and Symplectic Groups, in Groups and Computation, III, vol. 8, Columbus, OH, 1999 (Ohio State University Mathematical Research Institute Publications/de Gruyter, Berlin, 2001), pp. 1–20

    Google Scholar 

  2. M. Aschbacher, On the maximal subgroups of the finite classical groups. Invent. Math. 76(3), 469–514 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Babai, Local Expansion of Vertex-Transitive Graphs and Random Generation in Finite Groups, in 23rd ACM Symposium on Theory of Computing (ACM, New York, 1991), pp. 164–174

    Google Scholar 

  4. L. Babai, R. Beals, A Polynomial-Time Theory of Black Box Groups. I, in Groups St. Andrews 1997 in Bath, I. London Mathematical Society Lecture Note Series, vol. 260 (Cambridge University Press, Cambridge, 1999), pp. 30–64

    Google Scholar 

  5. L. Babai, E. Szemerédi, On the Complexity of Matrix Group Problems I, in 25th Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, 1984), pp. 229–240

    Google Scholar 

  6. L. Babai, W.M. Kantor, P.P. Pálfy, Á. Seress, Black-box recognition of finite simple groups of Lie type by statistics of element orders. J. Group Theor. 5(4), 383–401 (2002)

    MATH  Google Scholar 

  7. L. Babai, R. Beals, Á. Seress, Polynomial-Time Theory of Matrix Groups, in 41st ACM Symposium on Theory of Computing, Bethesda, MD, 2009 (ACM, New York, 2009), pp. 55–64

    Book  Google Scholar 

  8. R. Beals, C.R. Leedham-Green, A.C. Niemeyer, C.E. Praeger, Á. Seress, Permutations with restricted cycle structure and an algorithmic application. Combin. Probab. Comput. 11(5), 447–464 (2002)

    MathSciNet  MATH  Google Scholar 

  9. R. Beals, C.R. Leedham-Green, A.C. Niemeyer, C.E. Praeger, Á. Seress, A black-box group algorithm for recognizing finite symmetric and alternating groups. I. Trans. Am. Math. Soc. 355(5), 2097–2113 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. D.E.-C. Ben-Ezra, Counting elements in the symmetric group, Int. J. Algebra Comput. 19(3), 305–313 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. E.A. Bender, Asymptotic methods in enumeration. SIAM Rev. 16, 485–515 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. E.A. Bertram, B. Gordon, Counting special permutations. Eur. J. Comb. 10(3), 221–226 (1989)

    MathSciNet  MATH  Google Scholar 

  13. E.D. Bolker, A.M. Gleason, Counting permutations. J. Comb. Theor. Ser. A 29(2), 236–242 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Bóna, A. McLennan, D. White, Permutations with roots. Random Struct. Algorithm 17(2), 157–167 (2000)

    Article  MATH  Google Scholar 

  15. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.N. Bray, An improved method for generating the centralizer of an involution. Arch. Math. (Basel) 74(4), 241–245 (2000)

    Google Scholar 

  17. R.W. Carter, Finite Groups of Lie Type (Wiley Classics Library, Wiley, Chichester, 1993), Conjugacy classes and complex characters, Reprint of the 1985 original, A Wiley-Interscience Publication

    Google Scholar 

  18. F. Celler, C.R. Leedham-Green, S.H. Murray, A.C. Niemeyer, E.A. O’Brien, Generating random elements of a finite group. Comm. Algebra 23(13), 4931–4948 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. W.W. Chernoff, Solutions to x r = α in the alternating group. Ars Combin. 29(C), 226–227 (1990) (Twelfth British Combinatorial Conference, Norwich, 1989)

    Google Scholar 

  20. S. Chowla, I.N. Herstein, W.K. Moore, On recursions connected with symmetric groups. I. Can. J. Math. 3, 328–334 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Chowla, I.N. Herstein, W.R. Scott, The solutions of x d = 1 in symmetric groups. Norske Vid. Selsk. Forh. Trondheim 25, 29–31 (1952/1953)

    Google Scholar 

  22. A.M. Cohen, S.H. Murray, An algorithm for Lang’s Theorem. J. Algebra 322(3), 675–702 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. de Moivre, The Doctrine of Chances: Or, A Method of Calculating the Probability of Events in Play, 2nd edn. (H. Woodfall, London, 1738)

    Google Scholar 

  24. J.D. Dixon, Generating random elements in finite groups. Electron. J. Comb. 15(1), Research Paper 94 (2008)

    Google Scholar 

  25. P. Dusart, The kth prime is greater than \(k(\ln k +\ln \ln k - 1)\) for k ≥ 2. Math. Comp. 68(225), 411–415 (2009)

    Article  MathSciNet  Google Scholar 

  26. P. Erdős, M. Szalay, On Some Problems of the Statistical Theory of Partitions, in Number Theory, vol. I, Budapest, 1987. Colloq. Math. Soc. János Bolyai, vol. 51 (North-Holland, Amsterdam, 1990), pp. 93–110

    Google Scholar 

  27. P. Erdős, P. Turán, On some problems of a statistical group-theory. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4, 175–186 (1965)

    Article  Google Scholar 

  28. P. Erdős, P. Turán, On some problems of a statistical group-theory. II. Acta Math. Acad. Sci. Hung. 18, 151–163 (1967)

    Article  Google Scholar 

  29. P. Erdős, P. Turán, On some problems of a statistical group-theory. III. Acta Math. Acad. Sci. Hung. 18, 309–320 (1967)

    Article  Google Scholar 

  30. P. Erdős, P. Turán, On some problems of a statistical group-theory. IV. Acta Math. Acad. Sci. Hung. 19, 413–435 (1968)

    Article  Google Scholar 

  31. P. Erdős, P. Turán, On some problems of a statistical group theory. VI. J. Indian Math. Soc. 34(3–4), 175–192 (1970/1971)

    Google Scholar 

  32. P. Erdős, P. Turán, On some problems of a statistical group theory. V. Period. Math. Hung. 1(1), 5–13 (1971)

    Article  Google Scholar 

  33. L. Euler, Calcul de la probabilité dans le jeu de rencontre. Mémoires de l’Academie des Sciences de Berlin, 7 (1751) 1753, pp. 255–270. Reprinted in Opera Omnia: Series 1, vol. 7, pp. 11–25. Available through The Euler Archive at www.EulerArchive.org.

  34. L. Euler, Solutio Quaestionis curiosae ex doctrina combinationum. Mémoires de l’Académie des Sciences de St.-Petersbourg, 3:57–64, 1811. Reprinted in Opera Omnia: Series 1, vol. 7, pp. 435–440. Available through The Euler Archive at www.EulerArchive.org.

  35. P. Flajolet, R. Sedgewick, Analytic Combinatorics (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  36. J. Fulman, P.M. Neumann, C.E. Praeger, A generating function approach to the enumeration of matrices in classical groups over finite fields. Mem. Am. Math. Soc. 176(830), vi+90 (2005)

    Google Scholar 

  37. The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.5.2(beta), 2011, http://www.gap-system.org/

  38. S.P. Glasby, Using recurrence relations to count certain elements in symmetric groups. Eur. J. Comb. 22(4), 497–501 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. W.M.Y. Goh, E. Schmutz, The expected order of a random permutation. Bull. Lond. Math. Soc. 23(1), 34–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. V. Gončarov, On the field of combinatory analysis. Am. Math. Soc. Transl. 19(2), 1–46 (1962)

    Google Scholar 

  41. D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups. Mathematical Surveys and Monographs, vol. 40 (American Mathematical Society, Providence, 1994)

    Google Scholar 

  42. O. Gruder, Zur Theorie der Zerlegung von Permutationen in Zyklen. Ark. Mat. 2(5), 385–414 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  43. W.K. Hayman, A generalisation of Stirling’s formula. J. Reine Angew. Math. 196, 67–95 (1956)

    MathSciNet  MATH  Google Scholar 

  44. R.B. Herrera, The number of elements of given period in finite symmetric groups. Am. Math. Mon. 64, 488–490 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  45. P.E. Holmes, S.A. Linton, E.A. O’Brien, A.J.E. Ryba, R.A. Wilson, Constructive membership in black-box groups. J. Group Theor. 11(6), 747–763 (2008)

    MathSciNet  MATH  Google Scholar 

  46. I.M. Isaacs, W.M. Kantor, N. Spaltenstein, On the probability that a group element is p-singular. J. Algebra 176(1), 139–181 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. E. Jacobsthal, Sur le nombre d’éléments du groupe symétrique S n dont l’ordre est un nombre premier. Norske Vid. Selsk. Forh. Trondheim 21(12), 49–51 (1949)

    MathSciNet  MATH  Google Scholar 

  48. W.M. Kantor, Á. Seress, Black box classical groups. Mem. Am. Math. Soc. 149(708), viii+168 (2001)

    Google Scholar 

  49. A.V. Kolchin, Equations that contain an unknown permutation. Diskret. Mat. 6(1), 100–115 (1994)

    MathSciNet  Google Scholar 

  50. V.F. Kolchin, Random Graphs. Encyclopedia of Mathematics and Its Applications, vol. 53 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  51. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen. 2 Bände, 2nd edn. (Chelsea Publishing Co., New York, 1953), With an appendix by Paul T. Bateman

    Google Scholar 

  52. C.R. Leedham-Green, The Computational Matrix Group Project, in Groups and Computation, III, vol. 8, Columbus, OH, 1999 (Ohio State University Mathematical Research Institute Publications/de Gruyter, Berlin, 2001), pp. 229–247

    Google Scholar 

  53. C.R. Leedham-Green, E.A. O’Brien, Constructive recognition of classical groups in odd characteristic. J. Algebra 322(3), 833–881 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. G.I. Lehrer, Rational tori, semisimple orbits and the topology of hyperplane complements. Comment. Math. Helv. 67(2), 226–251 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  55. G.I. Lehrer, The cohomology of the regular semisimple variety. J. Algebra 199(2), 666–689 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. M.W. Liebeck, E.A. O’Brien, Finding the characteristic of a group of Lie type. J. Lond. Math. Soc. (2) 75(3), 741–754 (2007)

    Google Scholar 

  57. M.W. Liebeck, A. Shalev, The probability of generating a finite simple group. Geom. Dedicata 56(1), 103–113 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  58. F. Lübeck, A.C. Niemeyer, C.E. Praeger, Finding involutions in finite Lie type groups of odd characteristic. J. Algebra 321(11), 3397–3417 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. E.M. Luks, Permutation Groups and Polynomial-Time Computation, in Groups and computation, New Brunswick, NJ, 1991. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 11 (American Mathematical Society, Providence, 1993), pp. 139–175

    Google Scholar 

  60. R. Lyons, Evidence for a new finite simple group. J. Algebra 20, 540–569 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  61. A. Maróti, Symmetric functions, generalized blocks, and permutations with restricted cycle structure. Eur. J. Comb. 28(3), 942–963 (2007)

    Article  MATH  Google Scholar 

  62. N. Metropolis, The beginnings of the Monte Carlo method. Los Alamos Sci. 15 (Special Issue), 125–130 (1987)

    Google Scholar 

  63. M.P. Mineev, A.I. Pavlov, The number of permutations of a special form. Mat. Sb. (N.S.) 99(141)(3), 468–476, 480 (1976)

    Google Scholar 

  64. P.R. de Monmort, Essay d’analyse sur les jeux de hazard (J. Quillau, Paris, 1708)

    Google Scholar 

  65. P.R. de Monmort, Essay d’analyse sur les jeux de hazard, 2nd edn. (J. Quillau, Paris, 1713)

    Google Scholar 

  66. L. Moser, M. Wyman, On solutions of x d = 1 in symmetric groups. Can. J. Math. 7, 159–168 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  67. L. Moser, M. Wyman, Asymptotic expansions. Can. J. Math. 8, 225–233 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  68. L. Moser, M. Wyman, Asymptotic expansions. II. Can. J. Math. 9, 194–209 (1957)

    MathSciNet  MATH  Google Scholar 

  69. P.M. Neumann, C.E. Praeger, A recognition algorithm for special linear groups. Proc. Lond. Math. Soc. (3) 65 (3), 555–603 (1992)

    Google Scholar 

  70. P.M. Neumann, C.E. Praeger, Cyclic matrices over finite fields. J. Lond. Math. Soc. (2) 52, 263–284 (1995)

    Google Scholar 

  71. A.C. Niemeyer, T. Popiel, C.E. Praeger, Abundant p-singular elements in finite classical groups, preprint (2012) http://arxiv.org/abs/1205.1454v2

  72. A.C. Niemeyer, C.E. Praeger, A recognition algorithm for classical groups over finite fields. Proc. Lond. Math. Soc. (3) 77 (1), 117–169 (1998)

    Google Scholar 

  73. A.C. Niemeyer, C.E. Praeger, On the frequency of permutations containing a long cycle. J. Algebra 300(1), 289–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  74. A.C. Niemeyer, C.E. Praeger, On permutations of order dividing a given integer. J. Algebr. Comb. 26(1), 125–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  75. A.C. Niemeyer, C.E. Praeger, On the proportion of permutations of order a multiple of the degree. J. Lond. Math. Soc. (2) 76(3), 622–632 (2007)

    Google Scholar 

  76. A.C. Niemeyer, C.E. Praeger, Estimating proportions of elements in finite groups of Lie type. J. Algebra 324(1), 122–145 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  77. E.A. O’Brien, Algorithms for Matrix Groups, in Groups St. Andrews 2009 in Bath, vol. 2. London Mathematical Society Lecture Note Series, vol. 388 (Cambridge University Press, Cambridge, 2011), pp. 297–323

    Google Scholar 

  78. C.W. Parker, R.A. Wilson, Recognising simplicity of black-box groups by constructing involutions and their centralisers. J. Algebra 324(5), 885–915 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  79. E.T. Parker, P.J. Nikolai, A search for analogues of the Mathieu groups. Math. Tables Aids Comput. 12, 38–43 (1958)

    Article  MathSciNet  Google Scholar 

  80. A.I. Pavlov, An equation in a symmetric semigroup. Trudy Mat. Inst. Steklov. 177, 114–121, 208 (1986); Proc. Steklov Inst. Math. 1988(4), 121–129, Probabilistic problems of discrete mathematics

    Google Scholar 

  81. A.I. Pavlov, On permutations with cycle lengths from a fixed set. Theor. Probab. Appl. 31, 618–619 (1986)

    Google Scholar 

  82. W. Plesken, D. Robertz, The average number of cycles. Arch. Math. (Basel) 93(5), 445–449 (2009)

    Google Scholar 

  83. C.E. Praeger, On elements of prime order in primitive permutation groups. J. Algebra 60(1), 126–157 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  84. C.E. Praeger, Á. Seress, Probabilistic generation of finite classical groups in odd characteristic by involutions. J. Group Theor. 14(4), 521–545 (2011)

    MathSciNet  MATH  Google Scholar 

  85. C.E. Praeger, Á. Seress, Balanced involutions in the centralisers of involutions in finite general linear groups of odd characteristic (in preparation)

    Google Scholar 

  86. C.E. Praeger, Á. Seress, Regular semisimple elements and involutions in finite general linear groups of odd characteristic. Proc. Am. Math. Soc. 140, 3003–3015 (2012)

    Article  MathSciNet  Google Scholar 

  87. Á. Seress, Permutation Group Algorithms. Cambridge Tracts in Mathematics, vol. 152 (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  88. C.C. Sims, Computational Methods in the Study of Permutation Groups, in Computational Problems in Abstract Algebra, Proceedings of the Conference, Oxford, 1967 (Pergamon, Oxford, 1970), pp. 169–183

    Google Scholar 

  89. C.C. Sims, The Existence and Uniqueness of Lyons’ Group, in Finite groups ’72, Proceedings of the Gainesville Conference, University of Florida, Gainesville, FL, 1972. North–Holland Mathematical Studies, vol. 7 (North-Holland, Amsterdam, 1973), pp. 138–141

    Google Scholar 

  90. A.N. Timashev, Random permutations with cycle lengths in a given finite set. Diskret. Mat. 20(1), 25–37 (2008)

    MathSciNet  Google Scholar 

  91. J. Touchard, Sur les cycles des substitutions. Acta Math. 70(1), 243–297 (1939)

    Article  MathSciNet  Google Scholar 

  92. L.M. Volynets, The number of solutions of the equation x s = e in a symmetric group. Mat. Zametki 40(2), 155–160, 286 (1986)

    Google Scholar 

  93. R. Warlimont, Über die Anzahl der Lösungen von x n = 1 in der symmetrischen Gruppe S n . Arch. Math. (Basel) 30 (6), 591–594 (1978)

    Google Scholar 

  94. H. Wielandt, Finite Permutation Groups, Translated from the German by R. Bercov (Academic, New York, 1964)

    MATH  Google Scholar 

  95. H.S. Wilf, The asymptotics of e P(z) and the number of elements of each order in S n . Bull. Am. Math. Soc. (N.S.) 15 (2), 228–232 (1986)

    Google Scholar 

  96. H.S. Wilf, Generatingfunctionology, 2nd edn. (Academic, Boston, 1994)

    MATH  Google Scholar 

  97. K. Zsigmondy, Zur Theorie der Potenzreste. Monatsh. für Math. U. Phys. 3, 265–284 (1892)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This chapter forms part of our Australian Research Council Discovery Project DP110101153. Praeger and Seress are supported by an Australian Research Council Federation Fellowship and Professorial Fellowship, respectively. Niemeyer thanks the Lehrstuhl D für Mathematik at RWTH Aachen for their hospitality, and acknowledges a DFG grant in SPP1489. All three of us warmly thank the de Brún Centre for Computational Algebra at National University of Ireland, Galway, for their hospitality during the Workshop on Groups, Combinatorics and Computing in April 2011, where we presented the short lecture course that led to the development of this chapter. We are very grateful to Peter M. Neumann for many thoughtful comments and advice, and his translation of Euler’s words in Sect. 2.2.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice C. Niemeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Niemeyer, A.C., Praeger, C.E., Seress, Á. (2013). Estimation Problems and Randomised Group Algorithms. In: Detinko, A., Flannery, D., O'Brien, E. (eds) Probabilistic Group Theory, Combinatorics, and Computing. Lecture Notes in Mathematics, vol 2070. Springer, London. https://doi.org/10.1007/978-1-4471-4814-2_2

Download citation

Publish with us

Policies and ethics