Skip to main content

Robotic Hands and Underactuated Finger Mechanisms

  • Chapter
  • First Online:
  • 3448 Accesses

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 10))

Abstract

A real biologic hand has the features of compact volume, many fingers, many degree of freedoms, and strong grasp force, which brings big challenges to built a robotic hand-like real hand. In fact, all of the power supply, drivers, control system, sensors, and information processing system are need to be installed in the humanoid robot itself, which provides very strict power cost and real-time control as well as the humanoid appearance of the humanoid robot hand.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mason MT, Salisbury JK (1985) Robots hands and the mechanics of manipulation, MIT Press, Cambridge

    Google Scholar 

  2. Butterfass J, Grebenstein M, Liu H, Hirzinger G (2001) DLR-hand II: next generation of a dexterous robot hand. In: IEEE international conference on robotics and automation, Seoul, pp 109–114

    Google Scholar 

  3. Zhang Y, Han Z, Zhan H, Shang X, Wang T, Guo W (2001) Design and control of the BUAA four-fingered hand. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul, pp 2517–2522

    Google Scholar 

  4. Gosselin CM, Mountambault S, Gosselin CJ (1993) Manus colobi: preliminary results on the design of a mechanical hand for industrial applications. In: 19th ASME design automation conference, Albuquerque, vol 65, issue no 1, pp 585–592

    Google Scholar 

  5. Townsend WT (2000) The barrett hand grasper—programmable flexible parts handling and assembly. Ind Robot: An Int J  :181–188

    Article  Google Scholar 

  6. Barrett Hand. Available from: http://www.barretttechnology.com

  7. Fukaya N, Toyama S, Asfour T, Dillmann R (2000) Design of the TUAT/Karlsruhe humanoid hand. In: IEEE/RSJ international conference on intelligent robots and systems, Takamatsu, pp 1754–1759

    Google Scholar 

  8. Raparelli T, Mattiazzo G, Mauro S, Velardocchia M (2000) Design and development of a pneumatic anthropomorphic hand. J Robot Syst 17(1):1–15

    Article  MATH  Google Scholar 

  9. Dechev N, Cleghorn WL, Nauman S (1999) Multiple finger, passive adaptive grasp prosthetic hand. Mech Mach Theory 36:1157–1173

    Article  Google Scholar 

  10. Suares R, Grosch P (2004) Dexterous robotic hand MA-I software and hardware architecture. Intelligent manipulation and grasping, Genova, pp 91–96

    Google Scholar 

  11. Martin E, Desbiens AL, Laliberte′ T, Gosselin C (2004) SARAH hand used for space operation on STVF robot. Intelligent manipulation and grasping, Genova, pp 279–284

    Google Scholar 

  12. SARAH Hand. Available from. http://www.robot.gmc.ulaval.ca/recherche/theme04_a.html

  13. Edsinger-Gonzales A (2004) Design of a compliant and force sensing hand for a humanoid robot. Intelligent manipulation and grasping, Genova, pp 291–295

    Google Scholar 

  14. Roccella S, Carrozza MC, Cappiello G, Dario P, Cabibihan JJ, Zecca M, Hiwa H, Itoh K, Matsumoto M, Takanishi A (2004) Design, fabrication and preliminary results of a novel anthropomorphic hand for humanoid robotics: RCH-1. In: IEEE/RSJ international conference on intelligent robots and systems, Sendai, pp 266–271

    Google Scholar 

  15. ROBOSOFT Hand. Available from. http://www.robosoft.fr/SHEET/05Grippers/1002ROBOSOFT3FINGER/3Finger.html

  16. Qian X, Zhang Q (1996) The driver method and application of a driver mechanism of knuckle joint. China Patent No. 1136988A

    Google Scholar 

  17. Ceccarelli M, Tavolieri C, Lu Z (2006) Design considerations for underactuated grasp with a one D.O.F. anthropomorphic finger mechanism. In: Proceedings of 2006 IEEE/RSJ international conference on intelligent robots and systems (IROS 2006), Oct 9–15, Beijing, pp 1611–1616

    Google Scholar 

  18. Ceccarelli M (2004) Fundamentals of mechanics of robotic manipulation. Kluwer/Springer, Dordrecht

    MATH  Google Scholar 

  19. Mullen JF (1972) US Patent 3694021, Sept 26, 1972

    Google Scholar 

  20. Crisman JD, Kanojia C, Zeid I (1996) US Patent 5570920, Nov 5, 1996

    Google Scholar 

  21. Massa B, Roccella S, Carrozza MC, Dario P (2002) Design and development of an underactuated prosthetic hand. In: Proceedings of the 2002 IEEE international conference on robotics and automation, Washington, May 2002, pp 3374–3379

    Google Scholar 

  22. Carrozza MC, Suppo C, Sebastiani F, Massa B, Vecchi F, Lazzarini R, Cutkosky MR, Dario P (2004) The SPRING hand: development of a self-adaptive prosthesis for restoring natural grasping. Auton Robot 16:125–141

    Article  Google Scholar 

  23. Cabas R, Cabas LM, Balaguer C (2006) Optimized design of the underactuated robotic hand. In: Proceedings of the 2006 IEEE international conference on robotics and automation (ICRA 2006), Orlando, May 2006, pp 982–987

    Google Scholar 

  24. Krut S (2005) A force-isotropic underactuated finger. In: Proceedings of the 2005 IEEE international conference on robotics and automation (ICRA 2005), Barcelona, April 2005, pp 2314–2319

    Google Scholar 

  25. Dechev N, Cleghorn WL, Naumann S (2001) Multiple finger, passive adaptive grasp prosthetic hand. Mech Mach Theory 36:1157–1173

    Article  MATH  Google Scholar 

  26. Carrozza MC, Cappiello G, Stellin G, Zaccone F, Vecchi F, Micera S, Dario P (2005) A cosmetic prosthetic hand with tendon driven under-actuated mechanism and compliant joints: ongoing research and preliminary results. In: Proceedings of the 2005 IEEE international conference on robotics and automation (ICRA 2005), Barcelona, April 2005, pp 2661–2666

    Google Scholar 

  27. Gosselin C, Laliberte T (1998) US Patent 5762390, June 9, 1998

    Google Scholar 

  28. Laliberte T, Gosselin C (2003) Actuation system for highly underactuated gripping mechanism, US Patent 6505870, Jan 14, 2003

    Google Scholar 

  29. Zhang W, Chen Q, Sun Z (2003) Under-actuated humanoid robot hand with changeable grasping force. J Tsinghua Univ (Sci & Tech) 43(8):1143–1147

    Google Scholar 

  30. Zhang W, Chen Q, Sun Z, Zhao D (2004) Passive adaptive grasp multi-fingered humanoid robot hand with high under-actuated function. In: Proceedings of the 2004 IEEE international conference on robotics and automation, New Orleans, April 2004, pp 2216–2221

    Google Scholar 

  31. Wu L, Carbone G, Ceccarelli M (2009) Design an underactuated mechanism for a 1 active DOF finger operation, Mech Mach Theory, Accepted

    Google Scholar 

  32. Bégoc V, Krut S, Dombre E, Durand C, Pierrot F (2007) Mechanical design of a new pneumatically driven underactuated hand. In: IEEE international conference on robotics and automation, Roma, April 10–14 2007, pp 927–933

    Google Scholar 

  33. Zollo L, Roccella S, Guglielmelli E, Carrozza MC, Dario P (2007) Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications. IEEE/ASME Trans Mechatron 12(4):418–429

    Article  Google Scholar 

  34. Laliberte T, Gosselin CM (1998) Simulation and design of underactuated mechanical hands. Mech Mach Theory 33:39–57

    Article  MATH  Google Scholar 

  35. Birglen L, Gosselin CM (2004) Kinetostatic analysis of underactuated fingers. IEEE Trans Robot Autom 20(2):211–221

    Article  Google Scholar 

  36. Birglen L, Gosselin CM (2006) Grasp-state plane analysis of two-phalanx underactuated fingers. Mech Mach Theory 41:807–822

    Article  MATH  Google Scholar 

  37. Luo M, Mei T, Wang X, Yu Y (2004) Grasp characteristics of an underactuated robot hand. In: Proceedings of the 2004 IEEE international conference on robotics and automation, New Orleans, April 2004, pp 2236–2241

    Google Scholar 

  38. Zhao J, Jiang L, Shi S, Cai H, Liu H, Hirzinger G (2006) A five-fingered underactuated prosthetic hand system. In: Proceedings of the 2006 IEEE international conference on mechatronics and automation, Luoyang, June 25–28, 2006, pp 1453–1458

    Google Scholar 

  39. Nava Rodriguez NE, Carbone G, Ceccarelli M (2006) Optimal design of driving mechanism in a 1-DOF anthropomorphic finger. Mech Mach Theory 41:897–911

    Article  MATH  Google Scholar 

  40. Civitillo R (2001) Design and experimental validation of an antropomorphic finger with one d.o.f., Master thesis, LARM, University of Cassino, Cassino, 2001. (in Italian)

    Google Scholar 

  41. Ceccarelli M, Carbone G, Ottaviano E, Nava Rodriguez NE (2004) An experimental validation of a three-fingered hand with 1 d.o.f. anthropomorphic fingers. In: International conference on intelligent manipulation and grasping IMG04, Genova, 2004, pp 285–290

    Google Scholar 

  42. LARM homepage. Available from. http://webuser.unicas.it/weblarm/

  43. Park YC, Starr GP (1992) Grasp synthesis of polygonal objects using a three-fingered robot hand. Int J Robot Res 11(3):163–183

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licheng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Wu, L. (2013). Robotic Hands and Underactuated Finger Mechanisms. In: Carbone, G. (eds) Grasping in Robotics. Mechanisms and Machine Science, vol 10. Springer, London. https://doi.org/10.1007/978-1-4471-4664-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4664-3_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4663-6

  • Online ISBN: 978-1-4471-4664-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics