Skip to main content

Statistical Learning Theory

  • Chapter

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

This chapter presents an overview of statistical learning theory, and describes key results regarding uniform convergence of empirical means and related sample complexity. This theory provides a fundamental extension of the probability inequalities studied in Chap. 8 to the case when parameterized families of functions are considered, instead of a fixed function. The chapter formally studies the UCEM (uniform convergence of empirical means) property and the VC dimension in the context of the Vapnik–Chervonenkis theory. Extensions to the Pollard theory for continuous-valued functions are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alamo T, Tempo R, Camacho EF (2009) A randomized strategy for probabilistic solutions of uncertain feasibility and optimization problems. IEEE Trans Autom Control 54:2545–2559

    Article  MathSciNet  Google Scholar 

  2. Cover TM (1965) Geometrical and statistical properties of system of linear inequalities with applications in pattern recognition. IEEE Trans Electron Comput 14:326–334

    Article  MATH  Google Scholar 

  3. Devroye L, Györfi L, Lugosi G (1996) A probabilistic theory of pattern recognition. Springer, New York

    MATH  Google Scholar 

  4. Dudley RM (1978) Central limit theorems for empirical measures. Ann Probab 6:899–929

    Article  MathSciNet  MATH  Google Scholar 

  5. Dudley RM (1979) Balls in ℝk do not cut all subsets of k+2 points. Adv Math 31:306–308

    Article  MathSciNet  MATH  Google Scholar 

  6. Dudley RM (1984) A course on empirical processes. Springer, New York

    Google Scholar 

  7. Dudley RM (1999) Uniform central limit theorems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  8. Haussler D (1992) Decision theoretic generalizations of the PAC model for neural net and other learning applications. Inf Comput 100:78–150

    Article  MathSciNet  MATH  Google Scholar 

  9. Karpinski M, Macintyre A (1997) Polynomial bounds for VC dimension of sigmoidal and general Pfaffian neural networks. J Comput Syst Sci 54:169–176

    Article  MathSciNet  MATH  Google Scholar 

  10. Lugosi G (2002) Pattern classification and learning theory. In: Györfi L (ed) Principles of nonparametric learning. Springer, New York, pp 1–56

    Google Scholar 

  11. Macintyre AJ, Sontag ED (1993) Finiteness results for sigmoidal “neural” networks. In: Proceedings of the ACM symposium on theory of computing, pp 325–334

    Google Scholar 

  12. Parrondo JM, van den Broeck C (1993) Vapnik-Chervonenkis bounds for generalization. J Phys A 26:2211–2223

    MathSciNet  MATH  Google Scholar 

  13. Pollard D (1984) Convergence of stochastic processes. Springer, New York

    Book  MATH  Google Scholar 

  14. Pollard D (1990) Empirical processes: theory and applications. NSF-CBMS regional conference series in probability and statistics, vol 2. Institute of Mathematical Statistics

    MATH  Google Scholar 

  15. Sauer N (1972) On the density of families of sets. J Comb Theory 13(A):145–147

    Article  MathSciNet  MATH  Google Scholar 

  16. Sontag ED (1998) VC dimension of neural networks. In: Bishop CM (ed) Neural networks and machine learning. Springer, New York

    Google Scholar 

  17. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  18. Vapnik VN, Chervonenkis AY (1971) On the uniform convergence of relative frequencies to their probabilities. Theory Probab Appl 16:264–280

    Article  MATH  Google Scholar 

  19. Vidyasagar M (2001) Randomized algorithms for robust controller synthesis using statistical learning theory. Automatica 37:1515–1528

    Article  MathSciNet  MATH  Google Scholar 

  20. Vidyasagar M (2002) Learning and generalization: with applications to neural networks, 2nd edn. Springer, New York

    Google Scholar 

  21. Wenocur RS, Dudley RM (1981) Some special Vapnik-Chervonenkis classes. Discrete Math 33:313–318

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Tempo, R., Calafiore, G., Dabbene, F. (2013). Statistical Learning Theory. In: Randomized Algorithms for Analysis and Control of Uncertain Systems. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-4610-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4610-0_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4609-4

  • Online ISBN: 978-1-4471-4610-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics