Skip to main content

User-Specified Benchmarking

  • Chapter
  • 1960 Accesses

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Minimum-variance benchmarking only considers the most fundamental performance limitation of a control loop owing to the existence of time delays. In practice, however, there are many other limitations on the achievable control performance, such as constraints on controller order, structure, and action. Many researchers have introduced modified/extended versions of the Harris index to include design specifications of the user (such as the rise time and settling time) and take into account time delays in the system, leading to more realistic performance indices, referred to as user-specified benchmarks. This chapter provides a general setting for user-specified performance assessment and then presents the IMC-achievable performance assessment, the extended-horizon approach, performance assessment based on desired pole location, historical benchmarking, and assessment methods based on reference models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The inversion of RHP zeros and time delays leads to unstability and non-causality, respectively.

  2. 2.

    In the linear case, this means that the transfer-function denominator order is equal or greater than nominator order.

References

  • Alvarez J (1995) An internal-model controller for nonlinear discrete-time systems. In: Proc Europ control confer, Rome, pp 301–306

    Google Scholar 

  • Åström KJ, Wittenmark P (1997) Computer controlled systems: theory and design. Prentice Hall, New York

    Google Scholar 

  • Calvet J, Arkun Y (1988) Feedforward and feedback linearization of nonlinear systems and its implementation using internal model control (IMC). Ind Eng Chem Res 27:1822–1831

    Article  Google Scholar 

  • Desborough L, Harris T (1992) Performance assessment measures for univariate feedback control. Can J Chem Eng 70:1186–1197

    Article  Google Scholar 

  • Economou CG, Morari M (1986) Internal model control. 6. Multiloop design. Ind Eng Chem Process Des Dev 25:411–419

    Article  Google Scholar 

  • Economou CG, Morari M, Palsson BO (1986) Internal model control. 5. Extension to nonlinear systems. Ind Eng Chem Process Des Dev 25:403–411

    Article  Google Scholar 

  • Frank PM (1974) Entwurf von Regelkreisen mit vorgeschriebenem Verhalten. G Braun Verlag, Karlsruhe

    MATH  Google Scholar 

  • Gao J, Patwardhan RS, Akamatsu K, Hashimoto Y, Emoto G, Shah SL, Huang B (2003) Performance evaluation of two industrial MPC controllers. Control Eng Pract 11:1371–1387

    Article  Google Scholar 

  • García CE, Morari M (1982) Internal model control. 1. A unifying review and some new results. Ind Eng Chem Process Des Dev 21:308–323

    Article  Google Scholar 

  • García CE, Morari M (1985a) Internal model control. 2. Design procedure for multivariable systems. Ind Eng Chem Process Des Dev 24:472–484

    Article  Google Scholar 

  • García CE, Morari M (1985b) Internal model control. 3. Multivariable control law computation and tuning guidelines. Ind Eng Chem Process Des Dev 24:484–494

    Article  Google Scholar 

  • Gerry JP (2002) Process monitoring and loop prioritization can reap big payback and benefit process plants. In: Proc ISA, Chicago, USA

    Google Scholar 

  • Henson MA, Seborg E (1991) An internal model control strategy for nonlinear systems. AIChE J 37:1065–1081

    Article  MathSciNet  Google Scholar 

  • Horch A, Isaksson AJ (1999) A modified index for control performance assessment. J Process Control 9:475–483

    Article  Google Scholar 

  • Huang B, Shah SL (1997) Practical issues in multivariable feedback control performance assessment. In: Proc IFAC ADCHEM, Banff, Canada, pp 429–434

    Google Scholar 

  • Huang B, Shah SL (1999) Performance assessment of control loops. Springer, Berlin

    Book  Google Scholar 

  • Huang B, Shah SL, Badmus L, Vishnubhotla A (1999) Control performance assessment: an enterprise asset management solution. www.matrikon.com/download/products/lit/processdoctor_pa_eam.pdf

  • Ingimundarson A (2003) Dead-time compensation and performance monitoring in process control. PhD thesis, Lund Institute of Technology, Sweden

    Google Scholar 

  • Ingimundarson A, Hägglund T (2005) Closed-loop performance monitoring using loop tuning. J Process Control 15:127–133

    Article  Google Scholar 

  • Jelali M (2006a) Regelkreisüberwachung in der Metallindustrie Teil 1: Klassifikation und Be-schreibung der Methoden. Automatisierungstechnik 54:36–46

    Article  Google Scholar 

  • Kozub DJ, Garcia C (1993) Monitoring and diagnosis of automated controllers in the chemical process industries. In: Proc AIChE, St Louis, USA

    Google Scholar 

  • Lee TH, Wang QG, Tan KK (1996) A robust Smith-predictor controller for uncertain delay systems. AIChE J 42:1033–1173

    Article  Google Scholar 

  • Li Q, Whiteley JR, Rhinehart RR (2003) A relative performance monitor for process controllers. Int J Adapt Control Signal Process 17:685–708

    Article  MATH  Google Scholar 

  • Li Q, Whiteley JR, Rhinehart RR (2004) An automated performance monitor for process controllers. Control Eng Pract 12:537–553

    Article  Google Scholar 

  • Litrico X, Georges D (1999) Robust continuous-time and discrete-time flow control of a dam–river system. (II) Controller design. Appl Math Model 23:829–846

    Article  MATH  Google Scholar 

  • Morari M, Zafiriou E (1989) Robust process control. Prentice Hall, New York

    Google Scholar 

  • Moudgalya KM (2007) Digital control. Wiley, New York

    Book  Google Scholar 

  • Patwardhan RS, Shah S, Emoto G, Fujii H (1998) Performance analysis of model-based predictive controllers: an industrial study. In: Proc AIChE, Miami, USA

    Google Scholar 

  • Rhinehart R (1995) A watchdog for controller performance monitoring. In: Proc Amer control confer, Seattle, USA, pp 2239–2240

    Google Scholar 

  • Rivera DE, Morari M, Skogestad S (1986) Internal model control. 4. PID controller design. Ind Eng Chem Process Des Dev 25:252–265

    Article  Google Scholar 

  • Sunan H, Kiong TK, Heng LT (2002) Applied predictive control. Springer, Berlin

    Google Scholar 

  • Thornhill NF, Oettinger M, Fedenczuk MS (1999) Refinery-wide control loop performance assessment. J Process Control 9:109–124

    Article  Google Scholar 

  • Venkataramanan G, Shukla V, Saini R, Rhinehart RR (1997) An automated on-line monitor of control system performance. In: Proc Amer control confer, Albuquerque, New Mexico, USA, pp 1355–1359

    Google Scholar 

  • Youla DC, Bongiorno JJ, Jabr HA (1976a) Modern Wiener–Hopf design of optimal controllers—part I: the single-input-output case. IEEE Trans Autom Control 21:3–13

    Article  MathSciNet  MATH  Google Scholar 

  • Youla DC, Bongiorno JJ, Jabr HA (1976b) Modern Wiener–Hopf design of optimal controllers—part II: the multivariable case. IEEE Trans Autom Control 21:319–338

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Jelali, M. (2013). User-Specified Benchmarking. In: Control Performance Management in Industrial Automation. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-4546-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4546-2_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4545-5

  • Online ISBN: 978-1-4471-4546-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics