Skip to main content

Synthesis of Spatial Mechanisms to Model Human Joints

  • Conference paper

Abstract

The role played by diarthrodial joint models in surgery, pre-surgical planning and prosthesis design has been widely recognized. This chapter presents a procedure for the modelling of the diarthrodial human joints. The procedure features three main sequential steps, each of them leading to the kinematic, kinetostatic and dynamic models of the joint respectively. In particular, the chapter focuses on the first model, which can replicate the joint passive motion, i.e. the joint motion under virtually unloaded conditions. This model proves to be of great relevance for a deeper understanding of the joint anatomical structures and is the basic step for the next two kinematic and dynamic models. The first model is represented by a spatial mechanism called equivalent mechanism. Special emphasis is devoted to the synthesis of the mechanism. Examples of knee, ankle, and lower limb modelling are reported that prove the potential of the procedure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andriacchi, T.P., Mikosz, R.P., Hampton, S.J., Galante, J.O.: Model studies of the stiffness characteristics of the human knee joint. J. Biomech. 16(1), 23–29 (1983)

    Article  Google Scholar 

  2. Baldisserri, B., Parenti-Castelli, V.: Passive motion modeling of the human ankle complex joint. In: Proceedings of 13th World Congress in Mechanism and Machine Science, pp. 1–7 (2011)

    Google Scholar 

  3. Baldisserri, B., Parenti-Castelli, V.: A new 3d mechanism for modeling the passive motion of the tibia-fibula-ankle complex. J. Mech. Robot. 4, 021004 (2012)

    Article  Google Scholar 

  4. Belvedere, C., Catani, F., Ensini, A., Moctezuma de la Barrera, J.L., Leardini, A.: Patellar tracking during total knee arthroplasty: an in vitro feasibility study. Knee surgery, sports traumatology. Arthroscopy 15(8), 985–993 (2007)

    Google Scholar 

  5. Blajer, W., Dziewiecki, K., Mazur, Z.: Multibody modeling of human body for the inverse dynamics analysis of sagittal plane movements. Multibody Syst. Dyn. 18(2), 217–232 (2007)

    Article  MATH  Google Scholar 

  6. Blankevoort, L., Huiskes, R., Lange, A.D.: The envelope of passive knee joint motion. J. Biomech. 21(9), 705–720 (1988)

    Article  Google Scholar 

  7. Cheung, J.T.M., Zhang, M., Leung, A.K.L., Fan, Y.B.: Three-dimensional finite element analysis of the foot during standing—a material sensitivity study. J. Biomech. 38, 1045–1054 (2005)

    Article  Google Scholar 

  8. Colobert, B., Allard, A.C.P., Delamarche, P.: Force-plate based computation of ankle and hip strategies from double-inverted pendulum model. Clin. Biomech. 21(4), 427–434 (2006)

    Article  Google Scholar 

  9. Corazza, F., O’Connor, J.J., Leardini, A., Parenti-Castelli, V.: Ligament fibre recruitment and forces for the anterior drawer test at the human ankle joint. J. Biomech. 36, 363–372 (2003)

    Article  Google Scholar 

  10. Di Gregorio, R., Parenti-Castelli, V.: A spatial mechanism with higher pairs for modelling the human knee joint. J. Biomech. Eng. 125(2), 232–237 (2003)

    Article  Google Scholar 

  11. Di Gregorio, R., Parenti-Castelli, V., O’Connor, J.J., Leardini, A.: Equivalent spatial parallel mechanisms for the modelling of the ankle passive motion. In: Proceedings of ASME DETC 2004, 28th Biennial Mechanisms and Robotics Conference (2004)

    Google Scholar 

  12. Essinger, J.R., Leyvraz, P.F., Heegard, J.H., Robertson, D.D.: A mathematical model for the evaluation of the behaviour during flexion of condilar-type knee prosthesis. J. Biomech. 22(11), 1229–1241 (1989)

    Article  Google Scholar 

  13. Forlani, M., Baldisserri, B., Sancisi, N., Parenti-Castelli, V.: On the modelling of the ankle motion under static loads by a sequential procedure: model definition and preliminary results. In: Atti del XX CONGRESSO dell’Associazione Italiana di Meccanica Teorica e Applicata, pp. 1–10 (2011)

    Google Scholar 

  14. Franci, R., Parenti-Castelli, V.: A 5-5 one degree of freedom fully-parallel mechanism for the modelling of passive motion at the human ankle joint. In: Proceedings of ASME-IDETC/CIE 2007, Las Vegas, USA, pp. 1–8 (2007)

    Google Scholar 

  15. Franci, R., Parenti-Castelli, V.: A one-degree-of-freedom spherical wrist for the modelling of passive motion of the human ankle joint. In: Proceedings of IAK 2008, Lima, Peru, January 09–11, pp. 1–13 (2008)

    Google Scholar 

  16. Franci, R., Parenti-Castelli, V., Belevedere, C., Leardini, A.: A new one-dof fully parallel mechanism for modelling passive motion at the human tibiotalar joint. J. Biomech. 42, 1403–1408 (2009)

    Article  Google Scholar 

  17. Franci, R., Parenti-Castelli, V., Sancisi, N.: A three-step procedure for the modelling of human diarthrodial joints. Int. J. Mech. Control 10(1), 3–12 (2009)

    Google Scholar 

  18. Glitsch, U., Baumann, W.S.: Three-dimensional determination of internal loads in the lower extremity. J. Biomech. 30(11–12), 1123–1131 (1997)

    Article  Google Scholar 

  19. Goodfellow, J.W., O’Connor, J.J.: The mechanics of the knee and prosthesis design. J. Bone Jt. Surg. 60-B, 358–369 (1978)

    Google Scholar 

  20. Grood, E.S., Suntay, W.J.: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J. Biomech. Eng. 105, 136–144 (1983)

    Article  Google Scholar 

  21. Gunther, M., Blickhan, R.: Joint stiffness of the ankle and the knee in running. J. Biomech. 35(11), 1459–1474 (2002)

    Article  Google Scholar 

  22. Hansen, A.H., Childress, D.S., Miff, S.C., Gard, S.A., Mesplay, K.P.: The human ankle during walking: implications for design of biomimetic ankle prostheses. J. Biomech. 37, 1467–1474 (2004)

    Article  Google Scholar 

  23. Hefzy, M.S., Cooke, T.D.V.: Review of knee models: 1996 update. Appl. Mech. Rev. 49(10–2), 187–193 (1996)

    Article  Google Scholar 

  24. Iida, F., Rummel, J., Seyfarth, A.: Bipedal walking and running with spring-like biarticular muscles. J. Biomech. 41(3), 656–667 (2008)

    Article  Google Scholar 

  25. Ji, Z., Findley, T., Chaudhry, H., Bruce, B.: Computational method to evaluate ankle postural stiffness with ground reaction forces. J. Rehabil. Res. Dev. 41, 207–214 (2004)

    Article  Google Scholar 

  26. Koopman, B., Grootenboer, H.J., de Jongh, H.J.: Inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking. J. Biomech. 28(11), 1369–1376 (1995)

    Article  Google Scholar 

  27. Kutzbach, K.: Mechanische leitungsverzweigung; ihre gesetze und anwendungen. Maschinbau der Betrieb 8(21), 710–716 (1929)

    Google Scholar 

  28. La Fortune, M.A., Cavanagh, P.R., Sommer, H.J. III, Kalenak, A.: Three-dimensional kinematics of the human knee during walking. J. Biomech. 25(4), 347–357 (1992)

    Article  Google Scholar 

  29. Leardini, A., O’Connor, J.J., Catani, F., Giannini, S.: A geometric model of the human ankle joint. J. Biomech. 32(6), 585–591 (1999)

    Article  Google Scholar 

  30. Leardini, A., O’Connor, J.J., Catani, F., Giannini, S.: Kinematics of the human ankle complex in passive flexion: a single degree of freedom system. J. Biomech. 32(2), 111–118 (1999)

    Article  Google Scholar 

  31. Ledoux, W., Camacho, D., Ching, R., Sangeorzan, B.: The development and validation of a computational foot and ankle model. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 2899–2902 (2000)

    Google Scholar 

  32. Liacouras, P.C., Wayne, J.S.: Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies. J. Biomech. Eng. 129, 811–817 (2007)

    Article  Google Scholar 

  33. Merlet, J.P.: Kinematics and synthesis of cams-coupled parallel robots. In: Proceedings of CK2005, Cassino, Italy, May 4–6, pp. 1–12 (2005)

    Google Scholar 

  34. Meyer, A.R., Wang, M., Smith, P.A., Harris, G.F.: Modeling initial contact dynamics during ambulation with dynamic simulation. Med. Biol. Eng. Comput. 45(4), 387–394 (2007)

    Article  Google Scholar 

  35. Neptune, R., Kautz, S., Zajac, F.: Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J. Biomech. 34(11), 1387–1398 (2001)

    Article  Google Scholar 

  36. O’Connor, J.J., Shercliff, T.L., Biden, E., Goodfellow, J.W.: The geometry of the knee in the sagittal plane. Proc. Inst. Mech. Eng., H J. Eng. Med. 203(4), 223–233 (1989)

    Article  Google Scholar 

  37. Ottoboni, A., Parenti-Castelli, V., Sancisi, N., Belvedere, C., Leardini, A.: Articular surface approximation in equivalent spatial parallel mechanism models of the human knee joint. Proc. Inst. Mech. Eng., H J. Eng. Med. 224(9), 1121–1132 (2010)

    Article  Google Scholar 

  38. Parenti-Castelli, V.: Orthopaedic device and procedure to realize such a device (2007). Patent WO2007/074387

    Google Scholar 

  39. Parenti-Castelli, V., Catani, F., Sancisi, N., Leardini, A.: Improved orthopaedic device (2010). Patent WO2010/128485

    Google Scholar 

  40. Parenti-Castelli, V., Leardini, A., Di Gregorio, R., O’Connor, J.J.: On the modeling of passive motion of the human knee joint by means of equivalent planar and spatial parallel mechanisms. Auton. Robots 16(2), 219–232 (2004)

    Article  Google Scholar 

  41. Parenti-Castelli, V., Di Gregorio, R.: Parallel mechanisms applied to the human knee passive motion simulation. In: Lenarcic, J., Stanisic, M. (eds.) Advances in Robot Kinematics. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  42. Pictures, P.: Primal 3D Interactive Series: Knee. Primal Pictures Ltd., London (2003)

    Google Scholar 

  43. Pilkar, R.B., Moosbrugger, J.C., Bhatkar, V.V., Schilling, R.J., Storey, C.M., Robinson, C.J.: A biomechanical model of human ankle angle changes arising from short peri-threshold anterior translations of platform on which a subject stands. In: Proceedings of 29th Annual International Conference of IEEE-EMBS, pp. 4308–4311 (2007)

    Google Scholar 

  44. Rahman, E.A., Hefzy, M.S.: A two-dimensional dynamic anatomical model of the human knee joint. J. Biomech. Eng. 115, 357–365 (1993)

    Article  Google Scholar 

  45. Sancisi, N., Parenti-Castelli, V.: A 1-dof parallel spherical wrist for the modelling of the knee passive motion. In: Proceedings of IFToMM 2007, Besançon, France, June 17–21, pp. 1–6 (2007)

    Google Scholar 

  46. Sancisi, N., Parenti-Castelli, V.: A new 3d kinematic model of the patello-femoral joint during knee passive motion. In: Proceedings of AIMeTA 2007, Brescia, Italy, September 11–14, pp. 1–12 (2007)

    Google Scholar 

  47. Sancisi, N., Parenti-Castelli, V.: A sequential approach for modelling knee joint stiffness. In: Proceedings of Romansy 2008, Tokyo, Japan, July 05–09, pp. 1–8 (2008)

    Google Scholar 

  48. Sancisi, N., Parenti-Castelli, V.: A 1-dof parallel spherical wrist for the modelling of the knee passive motion. Mech. Mach. Theory 45, 658–665 (2010)

    Article  MATH  Google Scholar 

  49. Sancisi, N., Parenti-Castelli, V.: A new kinematic model of the passive motion of the knee inclusive of the patella. J. Mech. Robot. 3(4), 041003 (2011)

    Article  Google Scholar 

  50. Sancisi, N., Parenti-Castelli, V.: A novel 3d parallel mechanism for the passive motion simulation of the patella-femur-tibia complex. Meccanica 46(1), 207–220 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sancisi, N., Parenti-Castelli, V.: On the role of ligaments in the guidance of the human knee passive motion. In: Proceedings of Euromech Colloquium 511, Ponta Delgada, Azores, Portugal, March 09–12, pp. 1–9 (2011)

    Google Scholar 

  52. Sancisi, N., Parenti-Castelli, V.: A sequentially-defined stiffness model of the knee. Mech. Mach. Theory 46, 1920–1928 (2011)

    Article  MathSciNet  Google Scholar 

  53. Sasimontonkul, S., Bay, B.K., Pavol, M.J.: Bone contact forces on the distal tibia during the stance phase of running. J. Biomech. 40(15), 3503–3509 (2007)

    Article  Google Scholar 

  54. Schepers, H.M., Veltink, P.H.: Estimation of ankle moment using ambulatory measurement of ground reaction force and movement of foot and ankle. In: Proceedings of First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 399–401 (2006)

    Chapter  Google Scholar 

  55. Schepers, H.M., Koopman, H., Veltink, P.H.: Ambulatory assessment of ankle and foot dynamics. In: Proceedings of IEEE Transactions on Biomedical Engineering, pp. 895–900 (2006)

    Google Scholar 

  56. Tumer, T.S., Engin, A.E.: Three-body segment dynamic model of the human knee. J. Biomech. Eng. 115, 350–356 (1993)

    Article  Google Scholar 

  57. Wilson, D.R., Feikes, J.D., O’Connor, J.J.: Ligaments and articular contact guide passive knee flexion. J. Biomech. 31(12), 1127–1136 (1998)

    Article  Google Scholar 

  58. Wilson, D.R., O’Connor, J.J.: A three-dimensional geometric model of the knee for the study of joint forces in gait. Gait Posture 5, 108–115 (1997)

    Article  Google Scholar 

  59. Wismans, J., Velpaus, F., Janssen, J., Huson, A., Struben, P.: A three-dimensional mathematical model of the knee-joint. J. Biomech. 13, 677–685 (1980)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of Aer-Tech Lab, Bravo project and Lima Corporate is gratefully acknowledged. The authors also wish to thank the staff at Istituto Ortopedico Rizzoli for the collection of experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Parenti-Castelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this paper

Cite this paper

Parenti-Castelli, V., Sancisi, N. (2013). Synthesis of Spatial Mechanisms to Model Human Joints. In: McCarthy, J. (eds) 21st Century Kinematics. Springer, London. https://doi.org/10.1007/978-1-4471-4510-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4510-3_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4509-7

  • Online ISBN: 978-1-4471-4510-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics