Skip to main content

Shear Stress and Endothelial Cell Retention in Critical Lower Limb Ischemia

  • Chapter
  • First Online:
  • 1338 Accesses

Abstract

Progressive atherosclerotic stenosis of vessels commonly leads to the development of critical limb and myocardial ischemia. When possible and appropriate, surgical revascularization is attempted, and it is here that we clinically observe the pathological processes of ischemia and reperfusion and their complex effects [1]. Understanding of the role and function of the vascular endothelium has undergone significant changes over the past several decades. In the 1960s Willms-Kretschmer and colleagues referred to altered endothelial cells as being activated and, in doing so, implied a functional consequence to the altered cell morphology [2, 3]. This dynamic view of the endothelium, however, did not ensue into the following decade when, again, it was believed that endothelial cells were nothing more than a passive barrier. It would not be until the 1980s that Pober and colleagues would reexamine the scientific principle and ultimately prove that the vascular endothelium is both dynamic and integral to vascular and systemic equilibrium [4]. The scientific process to better understand the endothelium dates back to the 1800s when von Recklinghausen recognized that vessels were not merely inert tunnels passing through tissue, but living entities lined by cells [5]. The endothelial monolayer comprises the entirety of the vascular system, and it is now recognized that the diversity of these cells is not merely limited by cell type alone, but rather is a function of anatomic hemodynamic variation. The unique interface formed by the endothelium between blood and the surrounding vessel wall allows it to function as a primary mediator in response to shear stress alterations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Verrier ED, Boyle Jr EM. Endothelial cell injury in cardiovascular surgery. Ann Thorac Surg. 1996;62(3):915–22.

    Article  PubMed  CAS  Google Scholar 

  2. Willms-Kretchmer K, Flax MH, Cotran RS. The fine structure of the vascular response in haptan-specific delayed hypersensitivity and contact dermatitis. Lab Invest. 1967;17(3):334–49.

    Google Scholar 

  3. Pober JS. Warner-Lambert/Parke-Davis award lecture. Cytokine-mediated activation of vascular endothelium. Physiology and pathology. Am J Pathol. 1988;133(3):426–33.

    PubMed  CAS  Google Scholar 

  4. Bevilacqua MP, Pober JS, Wheeler ME. Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J Clin Invest. 1985;76:2003–11.

    Article  PubMed  CAS  Google Scholar 

  5. Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91(10):3527–61.

    CAS  Google Scholar 

  6. Paszkowiak JJ, Dardik A. Arterial wall shear stress: observations from the bench to the bedside. Vasc Endovascular Surg. 2003;37(1):47–57.

    Article  PubMed  Google Scholar 

  7. Dardik A, Chen L, Frattini J, et al. Differential effects of orbital and laminar shear stress on endothelial cells. J Vasc Surg. 2005;41(5):869–80.

    Article  PubMed  Google Scholar 

  8. Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995;75(3):519–60.

    PubMed  CAS  Google Scholar 

  9. Flaherty JT, Pierce JE, Ferrans VJ, et al. Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ Res. 1972;30(1):23–33.

    Article  PubMed  CAS  Google Scholar 

  10. Resnick N, Gimbrone MA. Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J. 1995;9(10):874–82.

    PubMed  CAS  Google Scholar 

  11. Malek AM, Alper AL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282(21):2035–42.

    Article  PubMed  CAS  Google Scholar 

  12. Caplan BA, Schwartz CJ. Increased endothelial cell turnover in areas of in vivo Evans blue uptake in the pig aorta. Atherosclerosis. 1973;17:401–17.

    Article  PubMed  CAS  Google Scholar 

  13. Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 2005;85:9–23.

    Article  PubMed  CAS  Google Scholar 

  14. Gimbrone Jr MA, Nagel T, Topper JN. Biomechanical activation: an emerging paradigm in endothelial adhesion biology. J Clin Invest. 1997;99(8):1809–13.

    Article  PubMed  CAS  Google Scholar 

  15. Gimbrone MA, Topper JN, Nagel T, et al. Endothelial dysfunction, hemodynamic forces, and atherogenesis Atherosclerosis V: the Fifth Saratoga Conference. Ann N Y Acad Sci. 2000;902:230–40.

    Article  PubMed  CAS  Google Scholar 

  16. Verrier ED, Morgan EN. Endothelial response to cardiopulmonary bypass surgery. Ann Thorac Surg. 1998;66(S1):S17–9.

    Article  PubMed  CAS  Google Scholar 

  17. Ten VS, Pinsky DJ. Endothelial response to hypoxia: physiologic adaptation and pathologic dysfunction. Curr Opin Crit Care. 2002;8(3):242–50.

    Article  PubMed  Google Scholar 

  18. Ratych RE, Chuknyiska RS, Bulkley GB. The primary localization of free radical generation after anoxia/reoxygenation in isolated endothelial cells. Surgery. 1987;102(2):122–31.

    PubMed  CAS  Google Scholar 

  19. Braunersreuther V, Jaquet V. Reactive oxygen species in myocardial reperfusion injury: from physiopathology to therapeutic approaches. Curr Pharm Biotechnol. 2012;13(1):97–114.

    Article  PubMed  CAS  Google Scholar 

  20. Kerrigan CL, Stotland MA. Ischemia reperfusion injury: a review. Microsurgery. 1993;14(3):165–75.

    Article  PubMed  CAS  Google Scholar 

  21. Cooley BC. History of vein grafting. Microsurgery. 1998;18(4):234–6.

    Article  PubMed  CAS  Google Scholar 

  22. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006;70(5):1469–80.

    Article  PubMed  CAS  Google Scholar 

  23. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84.

    Article  PubMed  CAS  Google Scholar 

  24. Manalo JD, Rowan A, Lavoie T, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood. 2005;105(2):659–69.

    Article  PubMed  CAS  Google Scholar 

  25. Carmeliet P, Jain RK. Angiogenesis in cancer and other disease. Nature. 2000;407:249–57.

    Article  PubMed  CAS  Google Scholar 

  26. Buschmann I, Schaper W. The pathophysiology of the collateral circulation (arteriogenesis). J Pathol. 2000;190(3):338–42.

    Article  PubMed  CAS  Google Scholar 

  27. Schaper W, Scholz D. Factors regulation arteriogenesis. Arterioscler Thromb Vasc Biol. 2003;23(7):1143–51.

    Article  PubMed  CAS  Google Scholar 

  28. Murray CD. The physiological principle of minimum work applied to the angle of branching of arteries. J Gen Physiol. 1926;9(6):835–41.

    Article  PubMed  CAS  Google Scholar 

  29. Grundmann S, Piek JJ, Pasterkamp G, et al. Arteriogenesis: basic mechanisms and therapeutic stimulation. Eur J Clin Invest. 2007;37(10):755–66.

    Article  PubMed  CAS  Google Scholar 

  30. Pipp F, Boehm S, Cai WJ, et al. Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb. Arterioscler Thromb Vasc Biol. 2004;24(9):1664–8.

    Article  PubMed  CAS  Google Scholar 

  31. Heil M, Eitenmüller I, Schmitz-Rixen T. Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med. 2006;10(1):45–55.

    Article  PubMed  CAS  Google Scholar 

  32. Kunlin J. Le traitement de l’arterite obliterante par la greffe veineuse. Arch Mal Coeur. 1949;42:371–2.

    Google Scholar 

  33. Dobrin PB, Littooy FN, Golan J, et al. Mechanical and histologic changes in canine vein grafts. J Surg Res. 1988;44(3):259–65.

    Article  PubMed  CAS  Google Scholar 

  34. Krupski W, Thal ER, Gewertz BL, et al. Endothelial response to venous injury. Am Med Assoc. 1979;114(11):1240–8.

    CAS  Google Scholar 

  35. Owens CD, Wake N, Jacot JG, et al. Early biomechanical changes in lower extremity vein grafts–distinct temporal phases of remodeling and wall stiffness. J Vasc Surg. 2006;44(4):740–6.

    Article  PubMed  Google Scholar 

  36. Owens CD, Rybicki FJ, Wake N. Early remodeling of lower extremity vein grafts: inflammation influences biomechanical adaptation. J Vasc Surg. 2008;47(6):1235–42.

    Article  PubMed  Google Scholar 

  37. Golledge J, Turner RJ, Harley SL, et al. Circumferential deformation and shear stress induce differential responses in saphenous vein endothelium exposed to arterial flow. J Clin Invest. 1997;99(11):2719–26.

    Article  PubMed  CAS  Google Scholar 

  38. Nadaud S, Philippe M, Arnal JF, et al. Sustained increase in aortic endothelial nitric oxide synthase expression in vivo in a model of chronic high blood flow. Circ Res. 1996;79:857–63.

    Article  PubMed  CAS  Google Scholar 

  39. Guzman RJ, Abe K, Zarins CK. Flow-induced arterial enlargement is inhibited by suppression of nitric oxide synthase activity in vivo. Surgery. 1997;122:273–80.

    Article  PubMed  CAS  Google Scholar 

  40. Kraiss LW, Geary RL, Mattsson EJ, et al. Acute reductions in blood flow and shear stress induce platelet-derived growth factor-A expression in baboon prosthetic grafts. Circ Res. 1996;79:45–53.

    Article  PubMed  CAS  Google Scholar 

  41. Mondy JS, Lindner V, Miyashiro JK, et al. Platelet-derived growth factor ligand and receptor expression in response to altered blood flow in vivo. Circ Res. 1997;81:320–7.

    Article  PubMed  CAS  Google Scholar 

  42. Masser PA, Taylor LM, Moneta GL, et al. Technique of reversed vein bypass for lower extremity ischemia. Ann Vasc Surg. 1996;10(2):190–200.

    Article  PubMed  CAS  Google Scholar 

  43. McCaughan Jr JJ, Walsh DB, Edgcomb LP, et al. In vitro observations of greater saphenous vein valves during pulsatile and nonpulsatile flow and following lysis. J Vasc Surg. 1984;1(2):356–61.

    PubMed  Google Scholar 

  44. Vesti BR, Primozich J, Bergelin RO, et al. Follow-up of valves in saphenous vein bypass grafts with duplex ultrasonography. J Vasc Surg. 2001;33(2):369–74.

    Article  PubMed  CAS  Google Scholar 

  45. Quist WC, LoGerfo FW. Prevention of smooth muscle cell phenotypic modulation in vein grafts: a hitomorphometric study. J Vasc Surg. 1992;16(2):225–31.

    Article  PubMed  CAS  Google Scholar 

  46. Ku DN, Klafta JM, Gewertz BL, et al. The contribution of valves to saphenous vein graft resistance. J Vasc Surg. 1987;6:274–9.

    PubMed  CAS  Google Scholar 

  47. Chin AK, Mayer DN, Goldman RK, et al. The effect of valvulotomy on flow rate through the saphenous vein graft: clinical implications. J Vasc Surg. 1988;8(3):316–20.

    PubMed  CAS  Google Scholar 

  48. May AG, DeWeese JA, Rob CG. Arterialization in situ saphenous vein. Arch Surg. 1965;91(5):743–50.

    Article  PubMed  CAS  Google Scholar 

  49. Souza SRD, Bomfim V, Skoglund H, et al. Early patency of saphenous vein graft for coronary artery bypass harvested with surrounding tissue. Ann Thorac Surg. 2001;71:797–800.

    Article  PubMed  CAS  Google Scholar 

  50. Stefanadis C, Vlachopoulos C, Karayannacos P, et al. Effect of vasa vasorum flow on structure and function of the aorta in experimental animals. Circulation. 1995;91:2669–78.

    Article  PubMed  CAS  Google Scholar 

  51. Gossl M, Versari D, Lerman LO, et al. Low vasa vasorum densities correlate with inflammation and subintimal thickening: potential role in location—determination of atherogenesis. Atherosclerosis. 2009;206:362–8.

    Article  PubMed  CAS  Google Scholar 

  52. Conte MS, Bandyk DK, Clowed AW, et al. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg. 2006;43(4):742–51.

    Article  PubMed  Google Scholar 

  53. Schanzer A, Hevelone N, Owens CD, et al. Technical factors affecting autogenous vein graft failure: observations from a large multicenter trial. J Vasc Surg. 2007;46(6):1180–90.

    Article  PubMed  Google Scholar 

  54. Voorhees AB, Jaretzki A, Blakemore AH. The use of tubes constructed from vinyon “N” cloth in bridging arterial defects: a preliminary. Ann Surg. 1952;135(3):332–3.

    Article  PubMed  Google Scholar 

  55. Kapadia MR, Popowich DA, Kibbe MR. Modified prosthetic vascular conduits. Circulation. 2008;117(14):1873–82.

    Article  PubMed  Google Scholar 

  56. Quarmby JW, Burnand KG, Lockhart SJM, et al. Prospective randomized trial of woven versus collagen¯impregnated knitted prosthetic Dacron grafts in aortoiliac surgery. Br J Surg. 1998;85(6):775–7.

    Article  PubMed  CAS  Google Scholar 

  57. Guidoin R, Gosselin C, Domurado D. Dacron as arterial prosthetic material: nature, properties, brands, fate and perspectives. Biomater Med Devices Artif Organs. 1977;5(2):177–203.

    PubMed  CAS  Google Scholar 

  58. Soyer T, Lempinen M, Cooper P, et al. A new venous prosthesis. Surgery. 1972;72(6):864–72.

    PubMed  CAS  Google Scholar 

  59. Campbell CD, Brooks DH, Webster MW. The use of expanded microporous polytetrafluoroethylene for limb salvage: a preliminary report. Surgery. 1976;79(5):485–91.

    PubMed  CAS  Google Scholar 

  60. Blumenberg RM, Anderson JM, Gelfand ML, et al. Histologic evaluation of Dacron® and PTFE graft material explanted from humans after 4 to 20 years in vivo. Vasc Endovascular Surg. 2000;34(6):505–12.

    Article  Google Scholar 

  61. Heyligers JMM, Lisman T, Weeterings C, et al. Heparin immobilization reduces thrombogenicity on small-caliber ePTFE grafts. J Vasc Surg. 2006;43(3):587–91.

    Article  PubMed  Google Scholar 

  62. Lin PH, Chen C, Bush RL, et al. Small-caliber heparincoated ePTFE grafts reduce platelet deposition and neointimal hyperplasia in a baboon model. J Vasc Surg. 2004;39(6):1322–8.

    Article  PubMed  Google Scholar 

  63. Hugl B, Nevelsteen A, Daenens K, et al. PEPE II-a multicenter study with an end-point heparin-bonded expanded polytetrafluoroethylene vascular graft for above and below knee bypass surgery: determinants of patency. J Cardiovasc Surg. 2009;50(2):195–203.

    CAS  Google Scholar 

  64. Post S, Kraus T, Muller-Reinartz U, et al. Dacron vs polytetrafluoroethylene grafts for femoropopliteal bypass: a prospective randomised multicentre trial. Eur J Vasc Endovasc Surg. 2001;22(3):226–31.

    Article  PubMed  CAS  Google Scholar 

  65. Stump MM, Jordan GL, DeBakey ME, et al. Endothelium grown from circulating blood on isolated intravascular Dacron hub. Am J Pathol. 1963;43(3):361–7.

    PubMed  CAS  Google Scholar 

  66. Berger K, Sauvage LR, Rao AM, et al. Healing of arterial prostheses in man: its incompleteness. Ann Surg. 1972;175(1):118–27.

    Article  PubMed  CAS  Google Scholar 

  67. Herring MB, Dilley R, Jersild RA. Seeding arterial prostheses with vascular endothelium. The nature of the lining. Ann Surg. 1979;190(1):84–90.

    Article  PubMed  CAS  Google Scholar 

  68. Stanley JC, Burkel WE, Ford JW, et al. Enhanced patency of small-diameter, externally supported Dacron iliofemoral grafts seeded with endothelial cells. Surgery. 1982;92(6):994–1005.

    PubMed  CAS  Google Scholar 

  69. Smyth JV, Welch M, Carr HMH, et al. Fibrinolysis profiles and platelet activation after endothelial cell seeding of prosthetic vascular grafts. Ann Vasc Surg. 1995;9(6):542–6.

    Article  PubMed  CAS  Google Scholar 

  70. Rosenman JE, Kempczinski RF, Pearce WH, et al. Kinetics of endothelial cell seeding. J Vasc Surg. 1985;2(6):778–84.

    PubMed  CAS  Google Scholar 

  71. Zilla P. In vitro endothelialization: its contribution towards an ideal vascular replacement. Madame Curie Bioscience Database [Internet]. Austin: Landes Bioscience; 2000.

    Google Scholar 

  72. Radomski JS, Jarrell BE, Williams SK, et al. Initial adherence of human capillary endothelial cells to Dacron. J Surg Res. 1987;42(2):133–40.

    Article  PubMed  CAS  Google Scholar 

  73. Foxall TL, Auger KR, Callow AD, et al. Adult human ­endothelial cell coverage of small-caliber Dacron and polytetrafluoroethylene vascular prostheses in vitro. J Surg Res. 1986;41(2):158–72.

    Article  PubMed  CAS  Google Scholar 

  74. Ott MJ, Ballermann BJ. Shear stress-conditioned, endothelial cell-seeded vascular grafts: improved cell adherence in response to in vitro shear stress. Surgery. 1995;117(3):334–9.

    Article  PubMed  CAS  Google Scholar 

  75. Dardik A, Liu A, Ballermann BJ. Chronic in vitro shear stress stimulates endothelial cell retention on prosthetic vascular grafts and reduces subsequent in vivo neointimal thickness. J Vasc Surg. 1999;29(1):157–67.

    Article  PubMed  CAS  Google Scholar 

  76. Herring M, Gardner A, Glover J. Seeding human arterial prostheses with mechanically derived endothelium: the detrimental effect of smoking. J Vasc Surg. 1984;1(2):279–89.

    PubMed  CAS  Google Scholar 

  77. Herring MH, Comiton RS, Legrand DR, et al. Endothelial seeding of polytetrafluoroethylene popliteal bypasses: a preliminary report. J Vasc Surg. 1987;6(2):114–8.

    Article  PubMed  CAS  Google Scholar 

  78. Deutsch M, Meinhart J, Fischlein T, et al. Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: a 9-year experience. Surgery. 1999;126(5):847–55.

    Article  PubMed  CAS  Google Scholar 

  79. Deutsch M, Meinhart J, Zilla P, et al. Long-term experience in autologous in vitro endothelialization of infrainguinal ePTFE grafts. J Vasc Surg. 2009;49(2):352–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Dardik MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Jadlowiec, C., Dardik, A. (2013). Shear Stress and Endothelial Cell Retention in Critical Lower Limb Ischemia. In: Gabriel, E., Gabriel, S. (eds) Inflammatory Response in Cardiovascular Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-4429-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4429-8_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4428-1

  • Online ISBN: 978-1-4471-4429-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics