Skip to main content

Robust and Adaptive Control with Output Feedback

  • Chapter
  • First Online:
  • 9793 Accesses

Part of the book series: Advanced Textbooks in Control and Signal Processing ((C&SP))

Abstract

In this chapter, we shall introduce an observer-based adaptive output feedback tracking control design for multi-input multi-output controllable and observable dynamical systems with matched uncertainties. The emphasis is on adaptive controllers that operate based on available output feedback signals (measurements), as opposed to state feedback connections. We assume that the number of the system measured outputs (sensors) is no less than the number of the control inputs (actuators). If the number of inputs and outputs are the same, we would require that the system has relative degree one. Such an input–output property might be restrictive for a generic class of systems. We will be able to alleviate the relative-degree-one restriction by assuming that the system has more outputs than inputs and that the corresponding output-to-input matrix has full rank. It turns out that in this case, the system can be “squared-up” (i.e., augmented) using pseudo-control signals to yield relative-degree-one minimum-phase dynamics. Since the “squaring-up” problem is solvable for any controllable and observable triplet (A, B, C) (Misra P, Numerical algorithms for squaring-up non-square systems, Part II: General case. In: Proceedings of American Control Conference, San Francisco, CA, 1998), our proposed adaptive output feedback design is applicable to systems whose regulated output dynamics may be nonminimum phase or have a high relative degree. In its core, our adaptive output feedback design is based on asymptotic properties of linear quadratic Gaussian regulators with Loop Transfer Recovery (Doyle JC, Stein G, IEEE Trans. Autom. Control 26(1):4–16, 1981). In essence, our method combines robust and adaptive controllers in a unified output feedback framework. The design is formally justified, that is, we will be able to formulate sufficient conditions to guarantee closed-loop stability and uniform ultimate boundedness of the corresponding tracking error dynamics. At the end of this chapter, we will offer a flight control design case study to demonstrate key features and benefits of the method.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4471-4396-3_15

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balas, G., Young, P.: Sensor selection via closed-loop control objectives. IEEE Trans. Autom. Control 7(6), 692–704 (2003)

    Google Scholar 

  2. Wal, M., Jager, B.: A review of methods for input/output selection. Automatica 37, 487–510 (2001)

    Article  MATH  Google Scholar 

  3. Narendra, K.S., Annaswamy, A.M.: Stable Adaptive Systems. Dover, New York (2005)

    MATH  Google Scholar 

  4. Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

  5. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall Inc., New York (2002)

    MATH  Google Scholar 

  6. Seshagiri, S., Khalil, H.K.: Output feedback control of nonlinear systems using RBF neural networks. IEEE Trans. Neural Netw 11(1), 69–79 (2000)

    Article  Google Scholar 

  7. Freidovich, L.B., Khalil, H.K.: Performance recovery of feedback-linearization-based designs. IEEE Trans. Autom. Control 53(10), 2324–2334 (2008)

    Article  MathSciNet  Google Scholar 

  8. Kuipers, M., Ioannou, P.: Multiple model adaptive control with mixing. IEEE Trans. Autom. Control 55(8), 1822–1836 (2010)

    Article  MathSciNet  Google Scholar 

  9. Lavretsky, E., Hovakimyan, N., Calise, A.: Upper bounds for approximation of continuous-time dynamics using delayed outputs and feedforward neural networks. IEEE Trans. Autom. Control 48(9), 1606–1610 (2003)

    Article  MathSciNet  Google Scholar 

  10. Doyle, J.C., Stein, G.: Multivariable feedback design: concepts for a classical/modern synthesis. IEEE Trans. Autom. Control 26(1), 4–16 (1981)

    Article  MATH  Google Scholar 

  11. Kwakernaak, H., Sivan, R.: The maximally achievable accuracy of linear optimal regulators and linear filters. IEEE Trans. Autom. Control 17(1), 79–86 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems. Wiley-Interscience, New York (1972)

    MATH  Google Scholar 

  13. Safonov, M.G., Laub, A.J., Hurtmann, G.L.: Feedback properties of multivariable systems: the role and use of the return difference matrix. IEEE Trans. Autom. Control 26(1), 47–65 (1981)

    Article  MATH  Google Scholar 

  14. Stein, G., Athans, M.: The LQG/LTR procedure for multivariable feedback control design. IEEE Trans. Autom. Control 32(2), 105–114 (1987)

    Article  MATH  Google Scholar 

  15. Lavretsky, E.: Adaptive output feedback design using asymptotic properties of LQG/LTR controllers. In: Proceedings of AIAA Guidance, Navigation and Control Conference, Toronto, Ontario, Canada (2010)

    Google Scholar 

  16. Misra, P.: Numerical algorithms for squaring-up non-square systems, Part II: General case. In: Proceedings of American Control Conference, San Francisco, CA (1998)

    Google Scholar 

  17. Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Math. Sciences (Springer-Verlag New York Inc), vol. 114. Springer, New York (1996)

    MATH  Google Scholar 

  18. Murray, J.D.: Asymptotic Analysis. Appl. Math. Sciences (Springer-Verlag New York Inc). Springer, New York (1984)

    Book  MATH  Google Scholar 

  19. Ioannou, P.A., Fidan, B.: Adaptive Control Tutorial. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  20. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1995)

    Google Scholar 

  21. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  22. Pomet, J.B., Praly, L.: Adaptive nonlinear regulation: estimation from the Lyapunov equation. IEEE Trans. Autom. Control 37(6), 729–740 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. McLean, D.: Gust-alleviation control systems for aircraft. Proc. Inst. Electr. Eng. Control Sci. 125(7), 675–685 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Lavretsky, E., Wise, K.A. (2013). Robust and Adaptive Control with Output Feedback. In: Robust and Adaptive Control. Advanced Textbooks in Control and Signal Processing. Springer, London. https://doi.org/10.1007/978-1-4471-4396-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4396-3_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4395-6

  • Online ISBN: 978-1-4471-4396-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics