Skip to main content

Finite Element Modeling

  • Chapter
  • First Online:
Finite Element Method in Machining Processes

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSMANUFACT))

  • 3013 Accesses

Abstract

In this chapter, general concepts of FEM are presented. Some advantages and disadvantage of the method are discussed, the various methods available are analyzed, a bibliographical review is presented and FEM programs are discussed. Following the questions and answers of Chap. 2, another similar discussion is made here, with the difference that only finite element modeling is concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dixit PM, Dixit US (2008) Modeling of metal forming and machining processes by finite element and soft computing methods. Springer, UK

    Google Scholar 

  2. Klocke F, Beck T, Hoppe S, Krieg T, Müller N, Nöthe T, Raedt HW, Sweeney K (2002) Examples of fem application in manufacturing technology. J Mater Process Technol 120:450–457

    Google Scholar 

  3. Mamalis AG, Manolakos DE, Ioannidis MB, Markopoulos A, Vottea IN (2003) Simulation of advanced manufacturing of solids and porous materials. Int J Manuf Sci Prod 5(3):111–130

    Google Scholar 

  4. Cook RD, Malkus DS, Plesha ME (1989) Concepts and applications of finite element analysis, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  5. Bathe K-J (1996) Finite element procedures. Prentice Hall, USA

    Google Scholar 

  6. Huang JM, Black JT (1996) An evaluation of chip separation criteria for the fem simulation of machining. J Manuf Sci Eng 118:545–554

    Google Scholar 

  7. Owen DRJ, Vaz M Jr (1999) Computational techniques applied to high-speed machining under adiabatic strain localization conditions. Comput Methods Appl Mech Eng 171:445–461

    MATH  Google Scholar 

  8. Lindgren LE, Edberg J (1990) Explicit versus implicit finite element formulation in simulation of rolling. J Mater Process Technol 24:85–94

    Google Scholar 

  9. Sun JS, Lee KH, Lee HP (2000) Comparison of implicit and explicit finite element methods for dynamic problems. J Mater Process Technol 105:110–118

    Google Scholar 

  10. Harewood FJ, McHugh PE (2007) Comparison of the implicit and explicit finite element methods using crystal plasticity. Comput Mater Sci 39:481–494

    Google Scholar 

  11. Shih AJ (1996) Finite element analysis of rake angle effects in orthogonal metal cutting. Int J Mech Sci 38:1–17

    MATH  Google Scholar 

  12. Marusich TD, Ortiz M (1995) Modelling and simulation of high-speed machining. Int J Numer Meth Eng 38:3675–3694

    MATH  Google Scholar 

  13. Strenkowski JS, Carrol JT III (1986) Finite element models of orthogonal cutting with application to single point diamond turning. Int J Mech Sci 30:899–920

    Google Scholar 

  14. Dirikolu MH, Childs THC, Maekawa K (2001) Finite element simulation of chip flow in metal machining. Int J Mech Sci 43:2699–2713

    MATH  Google Scholar 

  15. Astakhov VP, Outeiro JC (2008) Metal cutting mechanics, finite element modelling. In: Davim JP (ed) Machining: fundamentals and recent advances. Springer, UK

    Google Scholar 

  16. Shih AJ (1995) Finite element simulation of orthogonal metal cutting. ASME J Eng Ind 117:84–93

    Google Scholar 

  17. Bäker M, Rösler J, Siemers C (2002) A finite element model of high speed metal cutting with adiabatic shearing. Comput Struct 80:495–513

    Google Scholar 

  18. Özel T (2006) The influence of friction models on finite element simulations of machining. Int J Mach Tools Manuf 46:518–530

    Google Scholar 

  19. Maranhão C, Davim JP (2010) Finite element modelling of machining of aisi 316 steel: numerical simulation and experimental validation. Simul Model Pract Theory 18:139–156

    Google Scholar 

  20. Olovsson L, Nilsson L, Simonsson K (1999) An ALE formulation for the solution of two-dimensional metal cutting problems. Comput Struct 72:497–507

    MATH  Google Scholar 

  21. Movahhedy MR, Altintas Y, Gadala MS (2002) Numerical analysis of metal cutting with chamfered and blunt tools. Transactions of the ASME: J Manuf Sci Eng 124:178–188

    Google Scholar 

  22. Arrazola PJ, Özel T (2008) Numerical modelling of 3-D hard turning using arbitrary Eulerian Lagrangian finite element method. Int J Mach Mach Mater 3:238–249

    Google Scholar 

  23. Barge M, Hamdi H, Rech J, Bergheau J-M (2005) Numerical modelling of orthogonal cutting: influence of numerical parameters. J Mater Process Technol 164–165:1148–1153

    Google Scholar 

  24. Joshi VS, Dixit PM, Jain VK (1994) Viscoplastic analysis of metal cutting by finite element method. Int J Mach Tools Manuf 34:553–571

    Google Scholar 

  25. McClain B, Batzer SA, Maldonado GI (2002) A numeric investigation of the rake face stress distribution in orthogonal machining. J Mater Process Technol 123:114–119

    Google Scholar 

  26. Fihri Fassi H, Bousshine L, Chaaba A, Elharif A (2003) Numerical simulation of orthogonal cutting by incremental elastoplastic analysis and finite element method. J Mater Process Technol 141:181–188

    Google Scholar 

  27. Tyan T, Yang WH (1992) Analysis of orthogonal metal cutting processes. Int J Numer Methods Eng 34:365–389

    MATH  Google Scholar 

  28. Yang X, Liu CR (2002) A new stress-based model of friction behaviour in machining and its significant impact on the residual stresses computed by finite element method. Int J Mech Sci 44:703–723

    MATH  Google Scholar 

  29. Kishawy HA, Rogers RJ, Balihodzic N (2002) A numerical investigation of the chip-tool interface in orthogonal machining. Mach Sci Technol 6:397–414

    Google Scholar 

  30. Ohbuchi Y, Obikawa T (2005) Adiabatic shear in chip formation with negative rake angle. Int J Mech Sci 47:1377–1392

    MATH  Google Scholar 

  31. Mamalis AG, Branis AS, Manolakos DE (2002) Modelling of precision hard cutting using implicit finite element methods. J Mater Process Technol 123:464–475

    Google Scholar 

  32. Ng E-G, Aspinwall DK, Brazil D, Monaghan J (1999) Modelling of temperature and forces when orthogonally machining hardened steel. Int J Mach Tools Manuf 39:885–903

    Google Scholar 

  33. Borouchaki H, Cherouat A, Laug P, Saanouni K (2002) Adaptive re-meshing for ductile fracture prediction in metal forming. CR Mec 330:709–716

    MATH  Google Scholar 

  34. Vaz M Jr, Owen DRJ, Kalhori V, Lundblad M, Lindgren L-E (2007) Modelling and simulation of machining processes. Arch Comput Methods Eng 14:173–204

    MATH  Google Scholar 

  35. Guo YB, Dornfeld DA (2000) Finite element modeling of burr formation process in drilling 304 stainless steel. Trans ASME: J Manuf Sci Eng 122:612–619

    Google Scholar 

  36. Vaz M Jr, Owen DRJ (2001) Aspects of ductile fracture and adaptive mesh refinement in damaged elasto-plastic materials. Int J Numer Methods Eng 50:29–54

    MATH  Google Scholar 

  37. Wen Q, Guo YB, Todd BA (2006) An adaptive FEA method to predict surface quality in hard machining. J Mater Process Technol 173:21–28

    Google Scholar 

  38. Vaz M Jr (2000) On the numerical simulation of machining processes. J Braz Soc Mech Sci 22(2):179–188

    Google Scholar 

  39. Lin Z-C, Pan W-C (1993) A thermoelastic-plastic large deformation model for orthogonal cutting with tool flank wear—part I. Int J Mech Sci 35:829–840

    MATH  Google Scholar 

  40. Lo S-P (2000) An analysis of cutting under different rake angles using the finite element method. J Mater Process Technol 105:143–151

    Google Scholar 

  41. Mamalis AG, Horváth M, Branis AS, Manolakos DE (2001) Finite element simulation of chip formation in orthogonal metal cutting. J Mater Process Technol 110:19–27

    Google Scholar 

  42. Ng E-G, El-Wardany TI, Dumitrescu M, Elbestawi MA (2002) Physics-Based simulation of high speed machining. Mach Sci Technol 6:301–329

    Google Scholar 

  43. Mabrouki T, Rigal J-F (2006) A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning. J Mater Process Technol 176:214–221

    Google Scholar 

  44. Iwata K, Osakada K, Terasaka Y (1984) Process modeling of orthogonal cutting by the rigid plastic finite element method. ASME J Eng Ind 106:132–138

    Google Scholar 

  45. Ceretti E, Lucchi M, Altan T (1999) FEM simulation of orthogonal cutting: serrated chip formation. J Mater Process Technol 95:17–26

    Google Scholar 

  46. Klocke F, Raedt H-W, Hoppe S (2001) 2D-FEM simulation of the orthogonal high speed cutting process. Mach Sci Technol 5:323–340

    Google Scholar 

  47. Ko D-C, Ko S-L, Kim B-M (2002) Rigid-thermoviscoplastic finite element simulation of non-steady-state orthogonal cutting. J Mater Process Technol 130–131:345–350

    Google Scholar 

  48. Umbrello D, Hua J, Shivpuri R (2004) Hardness-based flow stress and fracture models for numerical simulation of hard machining AISI 52100 bearing steel. Mater Sci Eng, A 374:90–100

    Google Scholar 

  49. Ee KC, Dillon OW Jr, Jawahir IS (2005) Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius. Int J Mech Sci 47:1611–1628

    MATH  Google Scholar 

  50. Olovsson L, Nilsson L, Simonsson K (1999) An ALE formulation for the solution of two-dimensional metal cutting problems. Comput Struct 72:497–507

    MATH  Google Scholar 

  51. Jaspers SPFC, Dautzenberg JH (2002) Material behaviour in metal cutting: strains, strain rates and temperatures in chip formation. J Mater Process Technol 121:123–135

    Google Scholar 

  52. Astakhov VP (2006) Tribology of metal cutting. Elsevier, London

    Google Scholar 

  53. Athavale SM, Strenkowski JS (1998) Finite element modeling of machining: from proof-of-concept to engineering applications. Mach Sci Technol 2(2):317–342

    Google Scholar 

  54. Usui E, Maekawa K, Shirakashi T (1981) Simulation analysis of built-up edge formation in machining low carbon steels. Bull Jpn Soc Precis Eng 15:237–242

    Google Scholar 

  55. Maekawa K, Shirakashi T, Usui E (1983) Flow stress of low carbon steel at high temperature and strain rate (part 2). Bull Jpn Soc Precis Eng 17(3):167–172

    Google Scholar 

  56. Childs THC, Otieno AMW, Maekawa K (1994) The influence of material flow properties on the machining of steels. In: Proceedings of the 3rd international conference on the behaviour of materials in machining, Warwick, pp 104–119

    Google Scholar 

  57. Oxley PLB (1989) The mechanics of machining: an analytical approach to assessing machinability. Ellis Horwood, Chichester

    Google Scholar 

  58. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th international symposium on ballistics, The Hague, The Netherlands, pp 541–547

    Google Scholar 

  59. Jaspers SPFC, Dautzenberg JH (2002) Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone. J Mater Process Technol 122:322–330

    Google Scholar 

  60. Lee WS, Lin CF (1998) High-temperature deformation behavior of ti6al4 V alloy evaluated by high strain-rate compression tests. J Mater Process Technol 75:127–136

    Google Scholar 

  61. Özel T, Karpat Y (2007) Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms. Mater Manuf Processes 22:659–667

    Google Scholar 

  62. Umbrello D, M’Saoubi R, Outeiro JC (2007) The influence of johnson-cook material constants on finite element simulation of machining of AISI 316L steel. Int J Mach Tools Manuf 47:462–470

    Google Scholar 

  63. Liang R, Khan AS (1999) A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int J Plast 15:963–980

    MATH  Google Scholar 

  64. Shi J, Liu CR (2004) The influence of material models on finite element simulation of machining. Trans ASME: J Manuf Sci Eng 126:849–857

    Google Scholar 

  65. Zerilli FJ, Armstrong RW (1987) Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys 61:1816–1825

    Google Scholar 

  66. Meyer HW Jr, Kleponis DS (2001) Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration. Int J Impact Eng 26:509–521

    Google Scholar 

  67. Madhavan V, Adibi-Sedeh AH (2005) Understanding of finite element analysis results under the framework of oxley’s machining model. Mach Sci Technol 9:345–368

    Google Scholar 

  68. Markopoulos AP, Kantzavelos K, Galanis N, Manolakos DE (2011) 3D finite element modeling of high speed machining. Int J Manuf Mater Mech Eng 1(4):1–18

    Google Scholar 

  69. Zorev NN (1963) Interrelationship between shear processes occurring along tool face and on shear plane in metal cutting. In: Proceedings of the international research in production engineering conference, ASME, New York, pp 42–49

    Google Scholar 

  70. Childs THC, Maekawa K (1990) Computer-aided simulation and experimental studies of chip flow and tool wear in the turning of low alloy steels by cemented carbide tools. Wear 139:235–250

    Google Scholar 

  71. Sekhon GS, Chenot J-L (1993) Numerical simulation of continuous chip formation during non-steady orthogonal cutting. Eng Comput 10:31–48

    Google Scholar 

  72. Arrazola PJ, Özel T (2010) Investigations on the effects of friction modeling in finite element simulation of machining. Int J Mech Sci 52:31–42

    Google Scholar 

  73. Filice L, Micari F, Rizzuti S, Umbrello D (2007) A critical analysis on the friction modelling in orthogonal machining. Int J Mach Tools Manuf 47:709–714

    Google Scholar 

  74. Childs THC (2006) Friction modelling in metal cutting. Wear 260:310–318

    Google Scholar 

  75. Iqbal SA, Mativenga PT, Sheikh MA (2008) contact length prediction: mathematical models and effect of friction schemes on FEM simulation for conventional to HSM of AISI 1045 steel. Int J Mach Mach Mater 3(1/2):18–32

    Google Scholar 

  76. Childs THC, Maekawa K, Obikawa T, Yamane Y (2000) Metal machining: theory and applications. Elsevier, MA

    Google Scholar 

  77. Atkins AG (2006) Toughness and oblique cutting. Trans ASME: J Manuf Sci Eng 128(3):775–786

    Google Scholar 

  78. Rosa PAR, Martins PAF, Atkins AG (2007) Revisiting the fundamentals of metal cutting by means of finite elements and ductile fracture mechanics. Int J Mach Tools Manuf 47:607–617

    Google Scholar 

  79. Ng EG, Aspinwall DK (2002) Modeling of hard part machining. J Mater Process Technol 127:222–229

    Google Scholar 

  80. Usui E, Shirakashi T (1982) Mechanics of machining—from “Descriptive” to “Predictive” theory. In: Kops L, Ramalingam S (eds) on the art of cutting metals—75 Years later: a tribute to Taylor FW. In: Proceedings of the winter annual meeting of the ASME PED, vol 7, pp 13–35

    Google Scholar 

  81. Lin ZC, Lin SY (1992) A couple finite element model of thermo-elastic-plastic large deformation for orthogonal cutting. ASME J Eng Ind 114:218–226

    Google Scholar 

  82. Carrol JT III, Strenkowski JS (1988) Finite element models of orthogonal cutting with application to single point diamond turning. Int J Mech Sci 30:899–920

    Google Scholar 

  83. Xie JQ, Bayoumi AE, Zbib HM (1998) FEA modeling and simulation of shear localized chip formation in metal cutting. Int J Mach Tools Manuf 38:1067–1087

    Google Scholar 

  84. Liu CR, Guo YB (2000) Finite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layer. Int J Mech Sci 42:1069–1086

    MATH  Google Scholar 

  85. Shet C, Deng X (2000) Finite element analysis of the orthogonal metal cutting process. J Mater Process Technol 105:95–109

    Google Scholar 

  86. Obikawa T, Sasahara H, Shirakashi T, Usui E (1997) Application of computational machining method to discontinuous chip formation. Trans ASME: J Manuf Sci Eng 119:667–674

    Google Scholar 

  87. Komvopoulos K, Erpenbeck SA (1991) Finite element modeling of orthogonal metal cutting. ASME J Eng Ind 113:253–267

    Google Scholar 

  88. Lei S, Shin YC, Incropera FP (1999) Thermo-mechanical modeling of orthogonal machining process by finite element analysis. Int J Mach Tools Manuf 39:731–750

    Google Scholar 

  89. Zhang B, Bagchi A (1994) Finite element simulation of chip formation and comparison with machining experiment. ASME J Eng Ind 116:289–297

    Google Scholar 

  90. Soo SL, Aspinwall DK, Dewes RC (2004) 3D FE modelling of the cutting of inconel 718. J Mater Process Technol 150:116–123

    Google Scholar 

  91. Lin ZC, Lin Y-Y (1999) Fundamental modeling for oblique cutting by thermo-elastic-plastic FEM. Int J Mech Sci 41:941–965

    MATH  Google Scholar 

  92. Lin Z-C, Lin Y-Y (2001) Three-dimensional elastic-plastic finite element analysis for orthogonal cutting with discontinuous chip of 6–4 brass. Theoret Appl Fract Mech 35:137–153

    Google Scholar 

  93. Lin Z-C and Lo S-P (2001) 2-D discontinuous chip cutting model by using strain energy theory and elastic-plastic finite element method. Int J Mech Sci 43:381–398

    Google Scholar 

  94. Hua J, Shivpuri R (2004) Prediction of chip morphology and segmentation during the machining of titanium alloys. J Mater Process Technol 150:124–133

    Google Scholar 

  95. Li K, Gao X-L, Sutherland JW (2002) Finite element simulation of the orthogonal metal cutting process for qualitative understanding of the effects of crater wear on the chip formation process. J Mater Process Technol 127:309–324

    Google Scholar 

  96. Shet C, Deng X (2003) Residual stresses and strains in orthogonal metal cutting. Int J Mach Tools Manuf 43:573–587

    Google Scholar 

  97. Hashemi J, Tseng A, Chou PC (1994) Finite element modeling of segmental chip formation in high-speed machining. J Mater Eng Perform 3:712–721

    Google Scholar 

  98. Obikawa T, Usui E (1996) Computational machining of titanium alloy-finite element modeling and a few results. Trans ASME: J Manuf Sci Eng 118:208–215

    Google Scholar 

  99. Benson DJ, Okazawa S (2004) Contact in a multi-material Eulerian finite element formulation. Comput Methods Appl Mech Eng 193:4277–4298

    MATH  Google Scholar 

  100. Markopoulos AP (2006) Ultrprecision material removal processes. Ph.D. Thesis, National Technical University of Athens, Greece

    Google Scholar 

  101. Kahlori V (2001) Modelling and simulation of mechanical cutting. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden

    Google Scholar 

  102. Zienkiewicz OC (1971) The finite element method in engineering science. McGraw-Hill Inc, London

    MATH  Google Scholar 

  103. Klamecki BE (1973) Incipient chip formation in metal cutting—A 3D finite element analysis, Ph.D. Thesis, University of Illinois at Urbana Champaign

    Google Scholar 

  104. Shirakashi T, Usui E (1974) Simulation analysis of orthogonal metal cutting mechanism. In: Proceedings of the 1st international conference on production engineering, part I, pp 535–540

    Google Scholar 

  105. Dirikolu MH, Childs THC, Maekawa K (2001) Finite element simulation of chip flow in metal machining. Int J Mech Sci 43:2699–2713

    MATH  Google Scholar 

  106. Strenkowski JS, Moon KJ (1990) Finite element prediction of chip geometry and tool/workpiece temperature distributions in orthogonal metal cutting. ASME J Eng Ind 112:313–318

    Google Scholar 

  107. Strenkowski JS, Carroll JT III (1985) A finite element model of orthogonal metal cutting. ASME J Eng Ind 107:346–354

    Google Scholar 

  108. Özel T, Altan T (2000) Process simulation using finite element method—prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling process. Int J Mach Tools Manuf 40:713–738

    Google Scholar 

  109. Ceretti E, Lazzaroni C, Menegardo L, Altan T (2000) Turning simulations using a three-dimentional fem code. J Mater Process Technol 98:99–103

    Google Scholar 

  110. Armarego EJA, Arsecularatne JA, Mathew P, Verezub S (2001) A CIRP survey on the available predictive performance models of machining operations-report on preliminary findings. In 4th CIRP international workshop on modelling of machining operations, Delft, The Netherlands, pp 002071–83

    Google Scholar 

  111. Mackerle J (1999) Finite-element analysis and simulation of machining: a bibliography (1976–1996). J Mater Process Technol 86:17–44

    Google Scholar 

  112. Mackerle J (2003) Finite element analysis and simulation of machining: an addendum a bibliography (1996–2002). Int J Mach Tools Manuf 43:103–114

    Google Scholar 

  113. Özel T, Zeren E (2007) Finite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machining. Int J Adv Manuf Technol 35:255–267

    Google Scholar 

  114. Arrazola PJ, Ugarte D, Domínguez X (2008) A new approach for friction identification during machining through the use of finite element modelling. Int J Mach Tools Manuf 48:173–183

    Google Scholar 

  115. Aurich JC, Bil H (2006) 3D finite element modelling of segmented chip formation. Ann CIRP 55(1):47–50

    Google Scholar 

  116. Attanasio A, Ceretti E, Rizzuti S, Umbrello D, Micari F (2008) 3D finite element analysis of tool wear in machining. Ann CIRP 57(1):61–64

    Google Scholar 

  117. Özel T (2009) Computational modeling of 3D turning: influence of edge micro-geometry on forces, stresses, friction and tool wear in PcBN tooling. J Mater Process Technol 209:5167–5177

    Google Scholar 

  118. Tang DW, Wang CY, Hu YN, Song YX (2009) Finite-element simulation of conventional and high-speed peripheral milling of hardened mold steel. Metall Mater Trans A 40A:3245–3257

    Google Scholar 

  119. Pittalà GM, Monno M (2010) 3D finite element modeling of face milling of continuous chip material. Int J Adv Manuf Technol 47:543–555

    Google Scholar 

  120. Klocke F, Kratz H (2005) Advanced tool edge geometry for high precision hard turning. Ann CIRP 54(1):47–50

    Google Scholar 

  121. Li S, Shih AJ (2006) Finite element modeling of 3D turning of titanium. Int J Adv Manuf Technol 29:253–261

    Google Scholar 

  122. Mamalis AG, Kundrák J, Markopoulos A, Manolakos DE (2008) On the finite element modeling of high speed hard turning. Int J Adv Manuf Technol 38(5–6):441–446

    Google Scholar 

  123. Davim JP, Maranhão C, Faria P, Abrão A, Rubio JC, Silva LR (2009) Precision radial turning of AISI D2 steel. Int J Adv Manuf Technol 42:842–849

    Google Scholar 

  124. Markopoulos AP, Manolakos DE (2010) Finite element analysis of micromachining. J Manuf Technol Res 2(1–2):17–30

    Google Scholar 

  125. Bäker M (2006) Finite element simulation of high-speed cutting forces. J Mater Process Technol 176:117–126

    Google Scholar 

  126. Ceretti E, Fallböhmer P, Wu WT, Altan T (1996) Application of 2D FEM to chip formation in orthogonal cutting. J Mater Process Technol 59:169–180

    Google Scholar 

  127. Ambati R (2008) Simulation and analysis of orthogonal cutting and drilling processes using LS-DYNA. Msc. Thesis, University of Stuttgart, Germany

    Google Scholar 

  128. Özel T (2003) Modeling of hard part machining: effect of insert edge preparation in CBN cutting tools. J Mater Process Technol 141:284–293

    Google Scholar 

  129. Grzesik W (2006) Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique. Int J Mach Tools Manuf 46:651–658

    Google Scholar 

  130. Bil H, Kılıç SE, Tekkaya AE (2004) A comparison of orthogonal cutting data from experiments with three different finite element models. Int J Mach Tools Manuf 44:933–944

    Google Scholar 

  131. Childs THC, Rahmad R (2009) The effect of a yield drop on chip formation of soft carbon steels. Mach Sci Technol 13:1–17

    Google Scholar 

  132. Childs THC (2009) Modelling orthogonal machining of carbon steels. Part I: strain hardening yield delay effects. Int J Mech Sci 51:402–411

    Google Scholar 

  133. Childs THC, Rahmad R (2009) Modelling orthogonal machining of carbon steels. Part II: comparisons with experiments. Int J Mech Sci 51:465–472

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos P. Markopoulos .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Markopoulos, A.P. (2013). Finite Element Modeling. In: Finite Element Method in Machining Processes. SpringerBriefs in Applied Sciences and Technology(). Springer, London. https://doi.org/10.1007/978-1-4471-4330-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4330-7_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4329-1

  • Online ISBN: 978-1-4471-4330-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics