Skip to main content

Computational Approaches to RNAi and Gene Silencing

  • Chapter
  • 895 Accesses

Abstract

The discovery of small regulatory RNAs in the past few years has deeply changed the RNA molecular biology, revealing more complex pathways involved in the regulation of gene expression and in the defense of the genome against exogenous nucleic acids. These small RNA molecules play a crucial role in many physiological processes. Aberrations in their sequences and expression patterns are often related to the development of malignant diseases. The underlying biological mechanisms are known as gene silencing and RNA interference (RNAi). This discovery not only changes our conception of gene expression regulation but, at the same time, opens new frontiers for the development of therapeutic approaches, more specific and less toxic, especially against all those diseases which are still resistant to traditional treatment. Computational techniques constitute an essential tool in the study of these complex systems. Many existing bioinformatics methods and newly developed approaches have been used to analyze and classify RNAi data and more sophisticated tools are needed to allow a better understanding of the small RNAs biogenesis, processing and functions. In this essay we will review the basics of gene expression regulation by small RNA molecules and discuss the main computational issues in RNAi research, focusing on the most popular algorithms and addressing the open challenges.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dykxhoorn, D.M., Lieberman, J.: The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu. Rev. Med. 56, 401–423 (2005)

    Article  Google Scholar 

  2. Chu, C.Y., Rana, T.M.: Small RNAs: regulators and guardians of the genome. J. Cell. Physiol. 213(2), 412–419 (2007)

    Article  Google Scholar 

  3. Kutter, C., Svoboda, P.: miRNA, siRNA, piRNA: knowns of the unknown. RNA Biol. 5(4), 181–188 (2008)

    Google Scholar 

  4. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  Google Scholar 

  5. Fire, A., et al.: Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature 391(6669), 806–811 (1998)

    Article  Google Scholar 

  6. Tomari, Y., Zamore, P.D.: Perspective: machines for RNAi. Genes Dev. 19, 517–529 (2005)

    Article  Google Scholar 

  7. Meister, G., Tuschl, T.: Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004)

    Article  Google Scholar 

  8. Matranga, C., et al.: Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005)

    Article  Google Scholar 

  9. Miyoshi, K., et al.: Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837–2848 (2005)

    Article  MathSciNet  Google Scholar 

  10. Rand, T.A., et al.: Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629 (2005)

    Article  Google Scholar 

  11. Gregory, R.I., et al.: Human RISC couples microRNA biogenesis and post-transcriptional gene silencing. Cell 123, 631–640 (2005)

    Article  Google Scholar 

  12. Maniataki, E., Mourelatos, Z.: A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19, 2979–2990 (2005)

    Article  Google Scholar 

  13. Talmor-Neiman, M., et al.: Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. Plant J. 48(4), 511–521 (2006)

    Article  Google Scholar 

  14. Fahlgren, N., et al.: Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in arabidopsis. Curr. Biol. 16(9), 939–944 (2006)

    Article  Google Scholar 

  15. Mette, M.F., et al.: Transcriptional silencing and promoter methylation triggered by double stranded RNA. EMBO J. 19(19), 5194–5201 (2000)

    Article  Google Scholar 

  16. Vagin, V.V., et al.: A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313(5785), 320–324 (2006)

    Article  Google Scholar 

  17. Mochizuki, K., Gorovsky, M.A.: Conjugation-specific small RNAs in tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement. Genes Dev. 18(17), 2068–2073 (2004)

    Article  Google Scholar 

  18. Katiyar-Agarwal, S., et al.: A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev. 21(23), 3123–3134 (2007)

    Article  Google Scholar 

  19. Kim, V.N.: MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376–385 (2005)

    Article  Google Scholar 

  20. Okamura, K., et al.: The regulatory activity of microRNA species has substantial influence on microRNA and 3′ UTR evolution. Nat. Struct. Mol. Biol. 15, 354–363 (2008)

    Article  Google Scholar 

  21. Erson, A.E., Petty, E.M.: MicroRNAs in development and disease. Clin. Genet. 74, 296–306 (2008)

    Article  Google Scholar 

  22. Bernstein, E., et al.: Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003)

    Article  Google Scholar 

  23. Harris, K.S., et al.: Dicer function is essential for lung epithelium morphogenesis. Proc. Natl. Acad. Sci. USA 103, 2208–2213 (2006)

    Article  Google Scholar 

  24. Harfe, B.D., et al.: The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl. Acad. Sci. USA 102, 10898–10903 (2005)

    Article  Google Scholar 

  25. O’Rourke, J.R., et al.: Essential role for Dicer during skeletal muscle development. Dev. Biol. 311, 359–368 (2007)

    Article  Google Scholar 

  26. Muljo, S.A., et al.: Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202, 261–269 (2005)

    Article  Google Scholar 

  27. Boutz, P., et al.: MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev. 21, 71–84 (2007)

    Article  Google Scholar 

  28. Garofalo, M., Condorelli, G., Croce, C.M.: MicroRNAs in diseases and drug response. Curr. Opin. Pharmacol. 8(5), 661–667 (2008)

    Article  Google Scholar 

  29. Wang, W.X., et al.: The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J. Neurosci. 28, 1213–1223 (2008)

    Article  Google Scholar 

  30. Eisenberg, I., et al.: Distinctive patterns of microRNA expression in primary muscular disorders. Proc. Natl. Acad. Sci. USA 104, 17016–17021 (2007)

    Article  MathSciNet  Google Scholar 

  31. Carè, A., et al.: MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007)

    Article  Google Scholar 

  32. Yang, B., et al.: The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13, 486–491 (2007)

    Article  Google Scholar 

  33. Visone, R., Croce, C.M.: MiRNAs and cancer. Am. J. Pathol. 174(4), 1131–1138 (2009)

    Article  Google Scholar 

  34. Cimmino, A., et al.: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 102(39), 13944–13949 (2005)

    Article  Google Scholar 

  35. Johnson, S.M., et al.: RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005)

    Article  Google Scholar 

  36. Kumar, M.S., et al.: Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl. Acad. Sci. USA 105, 3903–3908 (2008)

    Article  Google Scholar 

  37. Costinean, S., et al.: Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc. Natl. Acad. Sci. USA 103, 7024–7029 (2006)

    Article  Google Scholar 

  38. Eisenberg, I., et al.: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007)

    Article  Google Scholar 

  39. Griffiths-Jones, S., et al.: miRBase: tools for microRNA genomics. Nucleic Acids Res. 36(Database issue), D154–D158 (2008)

    Google Scholar 

  40. Bentwich, I., et al.: Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37, 766–770 (2005)

    Article  Google Scholar 

  41. Ambros, V., et al.: MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol. 13(10), 807–818 (2003)

    Article  Google Scholar 

  42. Seffens, W., Digby, D.: mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 27(7), 1578–1584 (1999)

    Article  Google Scholar 

  43. Zhang, B., et al.: Plant microRNA: a small regulatory molecule with big impact. Dev. Biol. 289(1), 3–16 (2006)

    Article  Google Scholar 

  44. Zhang, B.H., et al.: Evidence that miRNAs are different from other RNAs. Cell. Mol. Life Sci. 63(2), 246–254 (2006)

    Article  Google Scholar 

  45. Zhang, B., et al.: Computational identification of microRNAs and their targets. Comput. Biol. Chem. 30(6), 395–407 (2006)

    Article  MATH  Google Scholar 

  46. Lagos-Quintana, M., et al.: Identification of novel genes coding for small expressed RNAs. Science 294(5543), 853–858 (2001)

    Article  Google Scholar 

  47. Wang, X., et al.: MicroRNA identification based on sequence and structure alignment. Bioinformatics 21(18), 3610–3614 (2005)

    Article  Google Scholar 

  48. Dezulian, T., et al.: Identification of plant microRNA homologs. Bioinformatics 22(3), 359–360 (2006)

    Article  Google Scholar 

  49. Nam, J.W., et al.: Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res. 33(11), 3570–3581 (2005)

    Article  Google Scholar 

  50. Lai, E.C., et al.: Computational identification of Drosophila microRNA genes. Genome Biol. 4(7), R42 (2003)

    Article  Google Scholar 

  51. Lim, L.P., et al.: The microRNAs of Caenorhabditis elegans. Genes Dev. 17(8), 991–1008 (2003)

    Article  Google Scholar 

  52. Bonnet, E., et al.: Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc. Natl. Acad. Sci. USA 101(31), 11511–11516 (2004)

    Article  Google Scholar 

  53. Lindow, M., et al.: Intragenomic matching reveals a huge potential for miRNA-mediated regulation in plants. PLoS Comput. Biol. 3(11), e238 (2007)

    Article  Google Scholar 

  54. Bartel, D.P.: MicroRNAs: target recognition and regulatory functions. Cell 136(2), 215–233 (2009)

    Article  Google Scholar 

  55. Sethupathy, P., et al.: TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 12, 192–197 (2006)

    Article  Google Scholar 

  56. Xiao, F., et al.: miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 37(Database issue), D105–D110 (2009)

    Article  Google Scholar 

  57. Chi, S.W., et al.: Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460(7254), 479–486 (2009)

    MathSciNet  Google Scholar 

  58. Lewis, B.P., Burge, C.B., Bartel, D.P.: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1), 15–20 (2005)

    Article  Google Scholar 

  59. Rehmsmeier, M., et al.: Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004)

    Article  Google Scholar 

  60. Hofacker, I.L.: How microRNAs choose their targets. Nat. Genet. 39(10), 1191–1192 (2007)

    Article  Google Scholar 

  61. Mathews, D.H.: Revolutions in RNA secondary structure prediction. J. Mol. Biol. 359(3), 526–532 (2006)

    Article  MathSciNet  Google Scholar 

  62. Grimson, A., et al.: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007)

    Article  Google Scholar 

  63. Mazière, P., Enright, A.J.: Prediction of microRNA targets. Drug Discov. Today 12(11–12), 452–458 (2007)

    Article  Google Scholar 

  64. John, B., et al.: Human MicroRNA targets. PLoS Biol. 2(11), 1862–1879 (2004)

    Article  Google Scholar 

  65. Betel, D., et al.: The microRNA.org resource: targets and expression. Nucleic Acids Res. 36(Database issue), D149–D153 (2007)

    Article  Google Scholar 

  66. Krek, A., et al.: Combinatorial microRNA target predictions. Nat. Genet. 37(5), 495–500 (2005)

    Article  Google Scholar 

  67. Kiriakidou, M., et al.: A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 18(10), 1165–1178 (2004)

    Article  Google Scholar 

  68. Miranda, K.C., et al.: A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203–1217 (2006)

    Article  Google Scholar 

  69. Long, D., et al.: Potent effect of target structure on microRNA function. Nat. Struct. Mol. Biol. 14(4), 287–294 (2007)

    Article  Google Scholar 

  70. Kertesz, M., et al.: The role of site accessibility in microRNA target recognition. Nat. Genet. 39(10), 1278–1284 (2007)

    Article  Google Scholar 

  71. Wadhwa, R., et al.: Know-how of RNA interference and its applications in research and therapy. Mutat. Res. 567(1), 71–84 (2004)

    Article  Google Scholar 

  72. Takeshita, F., Ochiya, T.: Therapeutic potential of RNA interference against cancer. Cancer Sci. 97(8), 689–696 (2006)

    Article  Google Scholar 

  73. Sah, D.W.: Therapeutic potential of RNA interference for neurological disorders. Life Sci. 79(19), 1773–1780 (2006)

    Article  Google Scholar 

  74. Rao, D.D., et al.: siRNA vs. shRNA: similarities and differences. Adv. Drug Deliv. Rev. 61(9), 746–759 (2009)

    Article  Google Scholar 

  75. Zhang, X., et al.: Enhancement of hypoxia-induced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1α. Cancer Res. 64, 8139–8142 (2004)

    Article  Google Scholar 

  76. Song, E., et al.: Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23, 709–717 (2005)

    Article  Google Scholar 

  77. Luo, M., et al.: RNAi of neuro peptide Y (NPY) for neuropathic pain. Society for Neuroscience Abstracts (2005)

    Google Scholar 

  78. Filleur, S., et al.: SiRNA-mediated inhibition of vascular endothelial growth factor severly limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res. 63(14), 3919–3922 (2003)

    Google Scholar 

  79. Zhang, Y., et al.: Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res. 10(11), 3667–3677 (2004)

    Article  Google Scholar 

  80. Gaudilliere, B., et al.: RNA interference reveals a requirement for MEF2A in activity-dependent neuronal survival. J. Biol. Chem. 277(48), 46442–46446 (2002)

    Article  Google Scholar 

  81. Reynolds, A., et al.: Rational siRNA design for RNA interference. Nat. Biotechnol. 22(3), 326–330 (2004)

    Article  Google Scholar 

  82. Ui-Tei, K., et al.: Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32(3), 936–948 (2004)

    Article  Google Scholar 

  83. Henschel, A., Buchholz, F., Habermann, B.: DEQOR: a web-based tool for the design and quality control of siRNAs. Nucleic Acids Res. 32(Web Server issue), W113–W120 (2004)

    Article  Google Scholar 

  84. Siolas, D., et al.: Synthetic shRNAs as potent RNAi triggers. Nat. Biotechnol. 23(2), 227–231 (2005)

    Article  Google Scholar 

  85. Chang, K., et al.: Lessons from nature: microRNA-based shRNA libraries. Nat. Methods 3(9), 707–714 (2006)

    Article  Google Scholar 

  86. Zeng, Y., Wagner, E.J., Cullen, B.R.: Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002)

    Article  Google Scholar 

  87. Silva, J.M., et al.: Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet. 37, 1281–1288 (2005)

    Google Scholar 

  88. Chen, C.Z., et al.: MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004)

    Article  Google Scholar 

  89. Zeng, Y., Cullen, B.R.: Sequence requirements for micro RNA processing and function in human cells. RNA 9, 112–123 (2003)

    Article  Google Scholar 

  90. Boudreau, R.L., Martins, I., Davidson, B.L.: Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Molec. Ther. 17(1), 169–175 (2009)

    Article  Google Scholar 

  91. Schwab, R., et al.: Highly specific gene silencing by artificial microRNAs in arabidopsis. Plant Cell 18(5), 1121–1133 (2006)

    Article  Google Scholar 

  92. Warthmann, N., et al.: Highly specific gene silencing by artificial miRNAs in rice, PLoS. One. 3(3), e1829 (2008)

    Article  Google Scholar 

  93. Laganà, A., et al.: miR-Synth: a tool for designing highly specific synthetic miRNAs. In: ECSB 2007—The European Conference on Synthetic Biology: Design, Programming and Optimization of Biological Systems, Sant Feliu de Guixols, Spain, November 24–29 (2007)

    Google Scholar 

  94. Gruber, A.R., et al.: The Vienna RNA websuite. Nucleic Acids Res. 36(Web Server issue), W70–W74 (2008)

    Article  Google Scholar 

  95. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  96. Nam, S., et al.: miRGator: an integrated system for functional annotation of microRNAs. Nucleic Acids Res. 36(Database issue), D159–D164 (2007)

    Article  MathSciNet  Google Scholar 

  97. Laganà, A., et al: miRò: a miRNA knowledge base. Database, vol. 2009, bap008 (2009). doi:10.1093/database/bap008

  98. Landgraf, P., et al.: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7), 1401–1414 (2007)

    Article  Google Scholar 

  99. Becker, K.G., et al.: The genetic association database. Nat. Genet. 36(5), 431–432 (2004)

    Article  Google Scholar 

  100. Agrawal, R., et al.: Fast algorithms for mining association rules. In: Proc. 20th Int. Conf. Very Large Data Bases, VLDB 1994, pp. 487–499 (1994)

    Google Scholar 

  101. Burdick, D., et al.: MAFIA: a maximal frequent itemset algorithm for transactional databases. In: Proceedings of the 17th International Conference on Data Engineering 2001, pp. 443–452 (2001)

    Chapter  Google Scholar 

  102. Ventura, A., et al.: Targeted deletion reveals essential and overlapping functions of the miR-17-92 family of miRNA clusters. Cell 132, 875–886 (2008)

    Article  Google Scholar 

  103. Rao, P.K., et al.: Myogenic factors that regulate expression of muscle-specific microRNAs. Proc. Natl. Acad. Sci. USA 103(23), 8721–8726 (2006)

    Article  Google Scholar 

  104. Silber, J., et al.: miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 6, 14 (2008)

    Article  Google Scholar 

  105. Wang, G., et al.: Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am. J. Hum. Genet. 82(2), 283–289 (2008)

    Article  Google Scholar 

  106. Wang, Y., et al.: Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J. Biol. Chem. 283(19), 13205–13215 (2008)

    Article  Google Scholar 

  107. Calin, G.A., et al.: A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353(17), 1793–1801 (2005)

    Article  Google Scholar 

  108. Wang, W.X., et al.: The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J. Neurosci. 28(5), 1213–1223 (2008)

    Article  Google Scholar 

  109. Mi, S., et al.: MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 104(50), 19971–19976 (2007)

    Article  Google Scholar 

  110. Hebert, S.S., et al.: Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc. Natl. Acad. Sci. USA 105(17), 6415–6420 (2008)

    Article  Google Scholar 

  111. Hayashita, Y., et al.: A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65(21), 9628–9632 (2005)

    Article  Google Scholar 

  112. Tang, Y., et al.: Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol. Clin. Exp. Res. 32(2), 355–364 (2008)

    Article  Google Scholar 

  113. Galardi, S., et al.: miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J. Biol. Chem. 282(32), 23716–23724 (2007)

    Article  Google Scholar 

  114. Izzotti, A., et al.: Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J. March, 806–812 (2009)

    Article  Google Scholar 

  115. Ferro, A., et al.: miRScape: a Cytoscape plugin to annotate biological networks with microRNAs. In: NETTAB 2009, Catania, June 10–12 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Laganà .

Editor information

Editors and Affiliations

Additional information

Foreword: This essay is dedicated to our unforgivable mentor and friend Jack Schwartz. His contribution to the birth and development of the Computer Science group in Catania will never be forgotten. For this reason we decided to entitle the well established Lipari School as “Jacob T. Schwartz International School for Scientific Research” ( http://lipari.dmi.unict.it ). Jack stimulated our interest in computational biology and bioinformatics, which is now the main subject of our research. In what follows we summarize some of the topics that were subjects of many stimulating discussions with Jack.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Laganà, A., Giugno, R., Pulvirenti, A., Ferro, A. (2013). Computational Approaches to RNAi and Gene Silencing. In: Davis, M., Schonberg, E. (eds) From Linear Operators to Computational Biology. Springer, London. https://doi.org/10.1007/978-1-4471-4282-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4282-9_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4281-2

  • Online ISBN: 978-1-4471-4282-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics