Skip to main content

Experimental Results and Theoretical Interpretations of Solvus Relationships in the Zr–H System

  • Chapter
  • First Online:
Book cover The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1382 Accesses

Abstract

The equilibrium relationships derived for coherent equilibrium given in Chap. 7 and the conclusions derived from a general review of the origin of hysteresis in first-order phase transformations given in Chap. 6 are assessed here to provide a first attempt at a new semi-quantitative interpretation of the zirconium–hydrogen phase relationships. Numerical estimates are made to determine the stability conditions for the zirconium–hydrogen system on the basis of the coherent phase relationships derived for the polymorphic coherent transformation case given in Chap. 7. A complete quantitative assessment of the foregoing new concepts and their consequences to DHC, however, still remains to be completed. The theoretical assessment is followed by a comprehensive examination of most of the available data for the solvus in zirconium–hydrogen systems. This review has led to some reinterpretation of the meaning and physical significance of some of the solvus data as it applies to DHC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the following specific application of the theory the β phase refers to the δ-hydride phase in the Zr–H system.

  2. 2.

    On theoretical grounds, there is the possibility that this could be the case for the Zr–H system since it is observed (see Chap. 3) that hydride precipitates form long, thin platelets and these shapes are the results of hydride formation by an invariant plane strain transformation for which almost all of the volumetric transformation strain would be directed in the platelet normal direction. For this extreme anisotropy of the transformation strain, using an expression given by Puls [35] for an aspect ratio of 0.1, the elastic accommodation energy is reduced by a factor of ~6.5 compared to the value obtained for a hydride precipitate of the same shape but with transformation strains assuming hydride formation occurred by a pure lattice strain transformation.

  3. 3.

    It could, however, be reduced to zero if all the stresses resulting from the misfit strains of the precipitates are relieved through diffusion of the atoms of the underlying lattice structure with respect to which the misfit strains are imposed.

  4. 4.

    Similarly dilatometry or electrical resistivity techniques use the inflection point as representing the TSS temperature.

  5. 5.

    This effect can also be seen in plots of the derivative of Young’s modulus versus temperature [31].

  6. 6.

    Strictly speaking, TSSDI is not a terminal solvus and should more properly be labeled SSDI.

  7. 7.

    In the paper by Cann et al. [5] \( r_{H}^{\beta /\alpha } \left( {\text{Nb}} \right) \) is given as 2.76; it is not clear which of the two values is the correct one.

  8. 8.

    The review of Cann’s results in Chap. 4 suggests that the change in TSSD should be somewhat less than what Cann estimates since he assumed that the partitioning of the hydrogen to the β phase would be reduced both by the decrease in the measured partitioning ratio and (erroneously, it appears) the reduction in the volume fraction of the beta phase.

  9. 9.

    In a subsequent paper they state that the maximum temperature used was 500 °C with a hold time of 5 min. However, this maximum temperature could not have been used by the authors for specimens with hydrogen content close to and up to the maximum value of 542 wppm, since the dissolution temperature for the maximum hydrogen content is above 500 °C.

References

  1. CSA: Technical Requirements for the In-service Evaluation of Zirconium Alloy Pressure Tubes in CANDU Reactors. Canadian Standards Association, Mississauga, Ontario, Canada, Nuclear Standard N285.8-10 (2010)

    Google Scholar 

  2. Cann, C.D.: Unpublished data. AECL, Chalk River Laboratories, Chalk River, Ontario, Canada (1994)

    Google Scholar 

  3. Cann, C.D., Atrens, A.: A metallographic study of the terminal solubility of hydrogen in zirconium at low hydrogen concentrations. J. Nucl. Mater. 88, 42–50 (1980)

    Article  Google Scholar 

  4. Cann, C.D., Puls, M.P., Sexton, E.E., et al.: The effect of metallurgical factors on hydride phases in zirconium. J. Nucl. Mater. 126, 197–205 (1984)

    Article  Google Scholar 

  5. Cann, C.D., Sexton, E.E., Duclos, A.M., et al.: The effect of decomposition of beta-phase Zr-20 at% Nb on hydrogen partitioning with alpha-zirconium. J. Nucl. Mater. 210, 6–10 (1994)

    Article  Google Scholar 

  6. Domain, C., Besson, R., Legris, A.: Atomic-scale ab initio study of the Zr–H system: I. Bulk properties. Acta Mater. 50, 3513–3526 (2002)

    Article  Google Scholar 

  7. Erickson, W.H., Hardy, D.: The influence of alloying elements on the terminal solubility of hydrogen in α-zirconium. J. Nucl. Mater. 13, 254–262 (1964)

    Article  Google Scholar 

  8. Flanagan, T.B., Park, C.-N., Oates, W.A.: Hysteresis in solid state reactions. Prog. Solid State Chem. 23, 291–363 (1995)

    Article  Google Scholar 

  9. Giroldi, J.P., Vizcaíno, P., Flores, A.V., et al.: Hydrogen terminal solid solubility determinations in Zr–2.5Nb pressure tube microstructure in an extended concentration range. J. Alloys Comp. 474, 140–146 (2009)

    Article  Google Scholar 

  10. Griffiths, M., Davies, P.H., Davies, W.G., et al.: Predicting the in-reactor mechanical behavior of Zr–2.5Nb pressure tubes from postirradiation microstructural examination data. In: Moan, G.D., Rudling, P (eds.) Zirconium in the Nuclear Industry: Thirteenth International Symposium. ASTM STP, vol. 1423, pp. 507–523 (2002)

    Google Scholar 

  11. Johnson, W.C., Voorhees, P.W.: Phase equilibrium in two-phase coherent solids. Metall. Trans. A 18A, 1213–1228 (1987)

    Google Scholar 

  12. Kearns, J.J.: Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4. J. Nucl. Mater. 22, 292–303 (1967)

    Article  Google Scholar 

  13. Khatamian, D., Ling, V.C.: Hydrogen solubility limits in α- and β-zirconium. J. Alloys Comp. 253, 162–166 (1997)

    Article  Google Scholar 

  14. Khatamian, D.: Solubility and partitioning of hydrogen in meta-stable Zr-based alloys used in the nuclear industry. J. Alloys Comp. 293–295, 893–899 (1999)

    Article  Google Scholar 

  15. Khatamian, D.: DSC “peak temperature” versus “maximum slope temperature” in determining TSSD temperature. J. Nucl. Mater. 205, 171–176 (2010)

    Article  Google Scholar 

  16. Khatamian, D., Pan, Z.L., Puls, M.P.: Hydrogen solubility limits in Excel, an experimental zirconium-based alloy. J. Alloys Comp. 231, 488–493 (1995)

    Article  Google Scholar 

  17. Khatamian, D., Root, J.H.: Comparison of TSSD results obtained by differential scanning calorimetry and neutron diffraction. J. Nucl. Mater. 372, 106–113 (2008)

    Article  Google Scholar 

  18. Kirchheim, R.: Interaction of hydrogen with dislocations in palladium—I. Activity and diffusivity and their phenomenological interpretation. Acta Metall. 29, 835–843 (1981)

    Article  Google Scholar 

  19. Kirchheim, R.: Interaction of hydrogen with dislocations in palladium—II. Interpretation of activity results by Fermi-Dirac distribution. Acta Metall. 29, 845–853 (1981)

    Article  Google Scholar 

  20. Lee, J.K., Earmme, Y.Y., Aaronson, H.I., et al.: Plastic relaxation of the transformation strain energy of a misfitting spherical precipitate: ideal plastic behavior. Metall. Trans. A 11A, 1837–1847 (1980)

    Google Scholar 

  21. Leitch, B.W., Puls, M.P.: Finite element calculations of the accommodation energy of a misfitting precipitate in an elastic-plastic matrix. Metall. Trans. A 23A, 797–806 (1992)

    Google Scholar 

  22. MacEwen, S.R., Coleman, C.E., Ells, C.E., et al.: Dilation of h.c.p. zirconium by interstitial deuterium. Acta Metall. 33, 753–757 (1985)

    Article  Google Scholar 

  23. Maxelon, M., Pundt, A., Pyckhout-Hintzen, W., et al.: Interaction of hydrogen and deuterium with dislocations in palladium as observed by small angle neutron scattering. Acta Mater. 49, 2625–2634 (2001)

    Article  Google Scholar 

  24. McMinn, A., Darby, E.C., Schofield, J.S.: The terminal solid solubility of hydrogen in zirconium alloys. In: Sabol, G.P., Moan, G.D. (eds.) Zirconium in the Nuclear Industry: Twelfth International Symposium. ASTM STP, vol. 1354, pp. 173–195 (2000)

    Google Scholar 

  25. Mishima, Y., Ishino, S., Nakajima, S.: A resistometry study of the solution and precipitation of hydrides in unalloyed zirconium. J. Nucl. Mater. 27, 335–344 (1968)

    Article  Google Scholar 

  26. Mishra, S., Sivaramakrishnan, K.S., Asundi, M.K.: Formation of the gamma phase by a peritectoid reaction in the zirconium-hydrogen system. J. Nucl. Mater. 45, 235–244 (1972/73)

    Google Scholar 

  27. Pan, Z.L.: Unpublished data. AECL-Chalk River Laboratories, Chalk River, Ontario, Canada (2000/2001)

    Google Scholar 

  28. Pan, Z.L., Puls, M.P., Ritchie, I.G.: Measurement of hydrogen solubility during isothermal charging in a Zr alloy using an internal friction technique. J. Alloys Comp. 211–212, 245–248 (1994)

    Article  Google Scholar 

  29. Pan, Z.L., Puls, M.P.: Precipitation and dissolution peaks of hydride in Zr–2.5Nb during quasistatic thermal cycles. J. Alloys Comp. 310, 214–218 (2000)

    Article  Google Scholar 

  30. Pan, Z.L., St Lawrence, S., Davies, P.H., et al.: Effect of irradiation on the fracture properties of Zr–2.5Nb pressure tubes at the end of design life. J. ASTM Int. 2/9, 1–22 (2005)

    Google Scholar 

  31. Pan, Z.L., Ritchie, I.G., Puls, M.P.: The terminal solid solubility of hydrogen and deuterium in Zr–2.5Nb alloys. J. Nucl. Mater. 228, 227–237 (1996)

    Article  Google Scholar 

  32. Pfeifer, M.J., Voorhees, P.W.: A graphical method for constructing coherent phase diagrams. Acta Metall. Mater. 39, 2001–2012 (1991)

    Article  Google Scholar 

  33. Puls, M.P.: The effects of misfit and external stresses on terminal solid solubility in hydride-forming metals. Acta Metall. 29, 1961–1968 (1981)

    Article  Google Scholar 

  34. Puls, M.P.: On the consequences of hydrogen supersaturation effects in Zr alloys to hydrogen ingress and delayed hydride cracking. J. Nucl. Mater. 165, 128–141 (1989)

    Article  Google Scholar 

  35. Puls, M.P.: Elastic and plastic accommodation effects on metal-hydride solubility. Acta Metall. 32, 1259–1269 (1984)

    Google Scholar 

  36. Puls, M.P.: Determination of fracture initiation in hydride blisters using acoustic emission. Metall. Trans. A 19A, 2247–2257 (1988)

    Google Scholar 

  37. Puls, M.P., Rogowski, A.J.: Hydride formation and redistribution in Zr–2.5wt% Nb stressed in torsion. In: Latanision, R.M., Pickens, J.R. (eds.) Atomistics of Fracture. Plenum Publishing Corporation, pp. 789–794 (1983)

    Google Scholar 

  38. Ritchie, I.G., Sprungmann, K.: Hydride precipitation in zirconium studied by pendulum techniques. Atomic Energy of Canada Report AECL-7806 (1983)

    Google Scholar 

  39. Ritchie, I.G., Pan, Z.L.: An internal friction study of Zr–2.5wt% Nb–H alloys. Phil. Mag. A 63, 1105–1113 (1991)

    Article  Google Scholar 

  40. Ritchie, I.G., Pan, Z.L.: Internal friction and Young’s modulus measurements in Zr–2.5Nb alloy doped with hydrogen. In: Kinra, V.K., Wolfenden, A. (eds.) M3D: Mechanics and Mechanism of Material Damping. pp. 385–395. ASTM, Phildadelphia (1992)

    Google Scholar 

  41. Setoyama, D., Matsunaga, J., Ito, M., et al.: Influence of additive elements on the terminal solid solubility of hydrogen for zirconium alloy. J. Nucl. Mater. 344, 291–294 (2005)

    Article  Google Scholar 

  42. Shi, S.Q., Shek, G.K., Puls, M.P.: Hydrogen concentration limit and critical temperatures for delayed hydride cracking in zirconium alloys. J. Nucl. Mater. 218, 189–201 (1995)

    Article  Google Scholar 

  43. Singh, R.N., Mukherjee, S., Gupta, A., et al.: Terminal solid solubility of hydrogen in Zr-alloy pressure tube material. J. Alloys Comp. 389, 102–112 (2005)

    Article  Google Scholar 

  44. Tang, R., Yang, X.: Dissolution and precipitation behaviors of hydrides in N18, Zry-4 and M5 alloys. Int. J. Hydrogen Energy 34, 7269–7274 (2009)

    Article  Google Scholar 

  45. Une, K., Ishimoto, S.: Dissolution and precipitation behavior of hydrides in Zircaloy-2 and high Fe Zircaloy. J. Nucl. Mater. 322, 66–72 (2003)

    Article  Google Scholar 

  46. Une, K., Ishimoto, S.: Terminal solid solubility of hydrogen in unalloyed zirconium by differential scanning calorimetry. J. Nucl. Sci. Technol. 41, 949–952 (2004)

    Article  Google Scholar 

  47. Vizcaíno, P., Banchik, A.D., Abriata, J.P.: Solubility of hydrogen in Zircaloy-4: irradiation induced increase and thermal recovery. J. Nucl. Mater. 304, 96–106 (2002)

    Article  Google Scholar 

  48. Vizcaíno, P., Banchik, A.D., Abriata, J.P.: Calorimetric determination of the δ hydride dissolution enthalpy in ZIRCALOY-4. Metall. Mater. Trans. A 35A, 2343–2349 (2004)

    Article  Google Scholar 

  49. Vizcaíno, P., Banchik, A.D., Abriata, J.P.: Hydride phase dissolution enthalpy in neutron irradiated Zircaloy-4. J. Nucl. Mater. 336, 54–64 (2005)

    Article  Google Scholar 

  50. Vizcaíno, P., Flores, A.V., Bozzano, P.B., et al.: Hydrogen solubility and microstructural changes in Zircaloy-4 due to neutron irradiation. J. ASTM Int. 8: Paper ID JAI102949 (2011)

    Google Scholar 

  51. Schwarz, R.B., Khachaturyan, A.G.: Thermodynamics of open two-phase systems with coherent interfaces: application to metal-hydrogen systems. Acta Mater. 54, 313–323 (2006)

    Article  Google Scholar 

  52. Slattery, G.F.: The terminal solubility of hydrogen in zirconium alloys between 30 and 400 °C. J. Inst. Metals 95, 43–47 (1967)

    Google Scholar 

  53. Yamanaka, S., Yoshioka, K., Uno, M., et al.: Thermal and mechanical properties of zirconium hydride. J. Alloys Compd. 293–295, 23–29 (1999)

    Article  Google Scholar 

  54. Yamanaka, S., Yoshioka, K., Uno, M., et al.: Isotope effects on the physicochemical properties of zirconium hydride. J. Alloys Compd. 293–295, 908–914 (1999)

    Article  Google Scholar 

  55. Zuzek, E., Abriata, J.P., San-Martin, A., et al.: H–Zr (Hydrogen-Zirconium). In: Phase Diagrams of Binary Hydrogen Alloys, pp. 309–322. ASM International, Materials Park, Ohio, USA (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred P. Puls .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Puls, M.P. (2012). Experimental Results and Theoretical Interpretations of Solvus Relationships in the Zr–H System. In: The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components. Engineering Materials. Springer, London. https://doi.org/10.1007/978-1-4471-4195-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4195-2_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4194-5

  • Online ISBN: 978-1-4471-4195-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics