Skip to main content

Applications to CANDU Reactors

  • Chapter
  • First Online:
  • 1340 Accesses

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter gives examples of how engineering data of DHC initiation, growth rate, and solvus determinations, supported by theoretical models, and associated underlying property measurements and analyses, are applied in integrity assessments of pressure tubes of CANDU reactors. Examples are given of (1) planar and volumetric flaw assessment approaches and (2) reactor core assessments (leak before break analyses).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In a CANDU reactor the temperature along the pressure tube typically ranges from approximately 250 to 300 °C.

References

  1. CSA: Technical Requirements for the In-service Evaluation of Zirconium Alloy Pressure Tubes in CANDU Reactors. Canadian Standards Association, Mississauga, Ontario, Canada, Nuclear Standard N285.8-10 (2010)

    Google Scholar 

  2. Coleman, C.E., Grigoriev, V., Inozemtsev, V., et al.: Delayed hydride cracking in Zircaloy fuel cladding—An IAEC coordinated research programme. Nucl. Eng. Technol. 41, 1–8 (2009)

    Article  Google Scholar 

  3. Coleman C.E., Ambler J.F.R.: Susceptibility of Zr alloys to delayed hydrogen cracking. In: Lowe. Jr. A.R., Parry. G.W. (eds.) Zirconium in the Nuclear Industry, ASTM STP, vol. 633, pp. 589–607 (1977)

    Google Scholar 

  4. Coleman C.E., Ambler J.F.R.: Delayed hydrogen cracking in Zr-2.5Nb alloy, Reviews on Coating and Corrosion III (2 and 3), 105–157 (1979)

    Google Scholar 

  5. Gutkin, L.: Unpublished. Kinectrics Inc., Toronto, Ontario, Canada. (2007)

    Google Scholar 

  6. Griffiths, M., Davies, P.H., Davies, W.G., et al.: Predicting the in-reactor mechanical behavior of Zr-2.5Nb pressure tubes from postirradiation microstructural examination data. In: Moan, G.D,, Rudling, P. (eds.) Zirconium in the Nuclear Industry: Thirteenth International Symposium, ASTM STP, vol. 1423, pp. 507–523 (2002)

    Google Scholar 

  7. Griffiths, M., Mecke, J.F., Winegar, J.E.: Evolution of microstructure in Zr-alloys during irradiation. In: Bradley E.R., Sabol G.P., (eds.) Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP, vol. 1295, pp. 580–602 (1996)

    Google Scholar 

  8. Griffiths, M., Sage, D., Holt, R.A., et al.: Determination of dislocation densities in hcp metals from X-ray diffraction line-broadening analysis. Metall. Trans 33A, 859–865 (2002)

    Google Scholar 

  9. Griffiths, M.: A review of microstructure evolution in zirconium alloys during irradiation. J. Nucl. Mater. 159, 190–218 (1988)

    Article  Google Scholar 

  10. Hosbons, R.R., Davies, P.H., Griffiths, M. et al.: Effect of long-term irradiation on the fracture properties of Zr-2.5Nb pressure tubes. In: Sabol, G.P., Moan, G.D. (eds.) Zirconium in the Nuclear Industry: Twelfth International Symposium. ASTM STP, vol. 1354, pp. 122–138 (2000)

    Google Scholar 

  11. IAEA: Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors. International Atomic Energy Agency, Report No. IAEA-TECDOC-1410 (2004)

    Google Scholar 

  12. Lufrano, J., Sofronis, P., Birnbaum, H.K.: Elastoplastically accommodated hydride formation and embrittlement. J. Mech. Phys. Solids 46, 1497–1520 (1998)

    Article  MATH  Google Scholar 

  13. Lufrano, J., Sofronis, P.: Micromechanics of hydride formation and cracking in zirconium alloys. Comput. Modell. Eng. Sci. (CMES) 1, 119–131 (2000)

    Google Scholar 

  14. Pan, Z.L., St. Lawrence, S., Davies, P.H., et al.: Effect of irradiation on the fracture properties of Zr-2.5Nb pressure tubes at the end of design life. J. ASTM Inter. Paper ID JAI1236 (2005)

    Google Scholar 

  15. Puls, M.P., Wilkins, B.J.S., Rigby, G.L., et al.: A probabilistic method for leak-before-break analysis of CANDU reactor pressure tubes. Nucl. Eng. Design 185, 241–248 (1998)

    Article  Google Scholar 

  16. Puls, M.P.: Assessment of aging of Zr-2.5Nb pressure tubes in CANDU reactors. Nucl. Eng. Design 171, 137–148 (1997)

    Article  Google Scholar 

  17. Puls, M.P., Leitch, B.W., Shi, S.Q.: The effect of applied stress on the accommodation energy and the solvi for the formation and dissolution of zirconium hydride. In: Moody, N.R., Thompson, A.W., Ricker, R.E., et al. (eds.) Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions. TMS (The Minerals, Metals & Materials Society), 233–248 (2003)

    Google Scholar 

  18. Sagat, S., Coleman, C.E., Griffiths, M., et al.: The effect of fluence and irradiation temperature on delayed hydride cracking in Zr-2.5Nb. In: Garde, E.M., Bradley, E.R. (eds.) Zirconium in the Nuclear Industry: Tenth International Symposium. ASTM STP, vol. 1245, pp. 35–61 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred P Puls .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Puls, M.P. (2012). Applications to CANDU Reactors. In: The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components. Engineering Materials. Springer, London. https://doi.org/10.1007/978-1-4471-4195-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4195-2_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4194-5

  • Online ISBN: 978-1-4471-4195-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics