Skip to main content

The Application of Molecular Techniques on Bone Marrow Trephines

  • Chapter
  • First Online:
Bone Marrow Lymphoid Infiltrates

Abstract

Examination of the bone marrow (BM) is a standard diagnostic procedure for the evaluation of patients with malignant lymphoma. Aspiration cytology, flow cytometric immunophenotyping, and the histopathological and immunohistochemical examination of BM biopsies (BMB) are currently the standard examination techniques, in selected cases supplemented with cytogenetics or interphase fluorescence in situ hybridization (FISH) [1–3]. Recent technical advances have allowed the application of ancillary immunohistochemical and molecular techniques to the BMB, which previously was only subjected to conventional histological examination [3, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmid C, Isaacson PG. Bone marrow trephine biopsy in lymphoproliferative disease. J Clin Pathol. 1992;45:745–50.

    Article  PubMed  CAS  Google Scholar 

  2. Bain BJ. Bone marrow trephine biopsy. J Clin Pathol. 2001;54:737–42.

    Article  PubMed  CAS  Google Scholar 

  3. Fend F, Kremer M. Diagnosis and classification of malignant lymphoma and related entities in the bone marrow trephine biopsy. Pathobiology. 2007;74:133–43.

    Article  PubMed  Google Scholar 

  4. Fend F, Bock O, Kremer M, Specht K, Quintanilla-Martinez L. Ancillary techniques in bone marrow pathology: molecular diagnostics on bone marrow trephine biopsies. Virchows Arch. 2005;447:909–19.

    Article  PubMed  CAS  Google Scholar 

  5. Perea G, Altes A, Bellido M, Aventin A, Bordes R, Ayats R, et al. Clinical utility of bone marrow flow cytometry in B-cell non-Hodgkin lymphomas (B-NHL). Histopathology. 2004;45:268–74.

    Article  PubMed  CAS  Google Scholar 

  6. Schmidt B, Kremer M, Gotze K, John K, Peschel C, Höfler H, et al. Bone marrow involvement in follicular lymphoma: comparison of histology and flow cytometry as staging procedures. Leuk Lymphoma. 2006;47:1857–62.

    Article  PubMed  Google Scholar 

  7. Navone R, Colombano MT. Histopathological trephine biopsy findings in cases of ‘dry tap’ bone marrow aspirations. Appl Pathol. 1984;2:264–71.

    PubMed  CAS  Google Scholar 

  8. Tbakhi A, Totos G, Pettay JD, Myles J, Tubbs RR. The effect of fixation on detection of B-cell clonality by polymerase chain reaction. Mod Pathol. 1999;12:272–8.

    PubMed  CAS  Google Scholar 

  9. Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 2002;161:1961–71.

    Article  PubMed  CAS  Google Scholar 

  10. Reineke T, Jenni B, Abdou MT, Frigerio S, Zubler P, Moch H, et al. Ultrasonic decalcification offers new perspectives for rapid FISH, DNA, and RT-PCR analysis in bone marrow trephines. Am J Surg Pathol. 2006;30:892–6.

    Article  PubMed  Google Scholar 

  11. Krenacs T, Bagdi E, Stelkovics E, Bereczki L, Krenacs L. How we process trephine biopsy specimens: epoxy resin embedded bone marrow biopsies. J Clin Pathol. 2005;58:897–903.

    Article  PubMed  CAS  Google Scholar 

  12. Bock O, Lehmann U, Kreipe H. Quantitative intra-individual monitoring of BCR-ABL transcript levels in archival bone marrow trephines of patients with chronic myeloid leukemia. J Mol Diagn. 2003;5:54–60.

    Article  PubMed  CAS  Google Scholar 

  13. Fend F, Gschwendtner A, Gredler E, Thaler J, Dietze O. Detection of monoclonal B-cell populations in decalcified, plastic-embedded bone marrow biopsies with the polymerase chain reaction. Am J Clin Pathol. 1994;102:850–5.

    PubMed  CAS  Google Scholar 

  14. Koch I, Slotta-Huspenina J, Hollweck R, Anastasov N, Hofler H, Quintanilla-Martinez L, et al. Real-time quantitative RT-PCR shows variable, assay-dependent sensitivity to formalin fixation: implications for direct comparison of transcript levels in paraffin-embedded tissues. Diagn Mol Pathol. 2006;15:149–56.

    Article  PubMed  CAS  Google Scholar 

  15. Wickham CL, Boyce M, Joyner MV, Sarsfield P, Wilkins BS, Jones DB, et al. Amplification of PCR products in excess of 600 base pairs using DNA extracted from decalcified, paraffin wax embedded bone marrow trephine biopsies. Mol Pathol. 2000;53:19–23.

    Article  PubMed  CAS  Google Scholar 

  16. Nagasaka T, Lai R, Chen YY, Chen W, Arber DA, Chang KL, et al. The use of archival bone marrow specimens in detecting B-cell non-Hodgkin’s lymphomas using polymerase chain reaction methods. Leuk Lymphoma. 2000;36:347–52.

    Article  PubMed  CAS  Google Scholar 

  17. Provan AB, Hodges E, Smith AG, Smith JL. Use of paraffin wax embedded bone marrow trephine biopsy specimens as a source of archival DNA. J Clin Pathol. 1992;45:763–5.

    Article  PubMed  CAS  Google Scholar 

  18. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17:2257–317.

    Article  PubMed  Google Scholar 

  19. Pascual V, Capra JD. Human immunoglobulin heavy-chain variable region genes: organization, polymorphism, and expression. Adv Immunol. 1991;49:1–74.

    Article  PubMed  CAS  Google Scholar 

  20. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302:575–81.

    Article  PubMed  CAS  Google Scholar 

  21. Pan L, Cesarman E, Knowles DM. Antigen receptor genes: structure, function and genetic analysis. In: Knowles DM, editor. Neoplastic hematopathology. 2nd ed. Philadelphia: Lippincott Williams and Wilkins; 2001. p. 307–28.

    Google Scholar 

  22. Deshpande AJ, Buske C, Quintanilla-Martinez L, Fend F. Molecular oncogenesis. In: Dunphy CH, editor. Molecular pathology of hematolymphoid diseases. New York: Springer; 2010. p. 3–20.

    Chapter  Google Scholar 

  23. Longerich S, Basu U, Alt F, Storb U. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol. 2006;18:164–74.

    Article  PubMed  CAS  Google Scholar 

  24. Kuppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 2005;5:251–62.

    Article  PubMed  Google Scholar 

  25. Bagg A. Malleable immunoglobulin genes and hematopathology - the good, the bad, and the ugly: a paper from the 2007 William Beaumont hospital symposium on molecular pathology. J Mol Diagn. 2008;10:396–410.

    Article  PubMed  CAS  Google Scholar 

  26. Wolvers-Tettero IL, van Dongen JJ. Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects. Clin Chim Acta. 1991;198:1–91.

    Article  PubMed  Google Scholar 

  27. Kremer M, Cabras AD, Fend F, Schulz S, Schwarz K, Hofler H, et al. PCR analysis of IgH-gene rearrangements in small lymphoid infiltrates microdissected from sections of paraffin-embedded bone marrow biopsy specimens. Hum Pathol. 2000;31:847–53.

    Article  PubMed  CAS  Google Scholar 

  28. Kremer M, Sandherr M, Geist B, Cabras AD, Hofler H, Fend F. Epstein-Barr virus-negative Hodgkin’s lymphoma after mycosis fungoides: molecular evidence for distinct clonal origin. Mod Pathol. 2001;14:91–7.

    Article  PubMed  CAS  Google Scholar 

  29. Kremer M, Spitzer M, Mandl-Weber S, Stecker K, Schmidt B, Hofler H, et al. Discordant bone marrow involvement in diffuse large B-cell lymphoma: comparative molecular analysis reveals a heterogeneous group of disorders. Lab Invest. 2003;83:107–14.

    PubMed  CAS  Google Scholar 

  30. Evans PA, Pott C, Groenen PJ, Salles G, Davi F, Berger F, et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia. 2007;21:207–14.

    Article  PubMed  CAS  Google Scholar 

  31. Liu H, Bench AJ, Bacon CM, Payne K, Huang Y, Scott MA, et al. A practical strategy for the routine use of BIOMED-2 PCR assays for detection of B- and T-cell clonality in diagnostic haematopathology. Br J Haematol. 2007;138:31–43.

    Article  PubMed  CAS  Google Scholar 

  32. Limpens J, Stad R, Vos C, de Vlaam C, de Jong D, van Ommen GJ, et al. Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood. 1995;85:2528–36.

    PubMed  CAS  Google Scholar 

  33. Roulland S, Lebailly P, Lecluse Y, Heutte N, Nadel B, Gauduchon P. Long-term clonal persistence and evolution of t(14;18)-bearing B cells in healthy individuals. Leukemia. 2006;20:158–62.

    Article  PubMed  CAS  Google Scholar 

  34. Trainor KJ, Brisco MJ, Wan JH, Neoh S, Grist S, Morley AA. Gene rearrangement in B- and T-lymphoproliferative disease detected by the polymerase chain reaction. Blood. 1991;78:192–6.

    PubMed  CAS  Google Scholar 

  35. McCarthy KP, Sloane JP, Kabarowski JH, Matutes E, Wiedemann LM. A simplified method of detection of clonal rearrangements of the T-cell receptor-gamma chain gene. Diagn Mol Pathol. 1992;1:173–9.

    PubMed  CAS  Google Scholar 

  36. McCarthy KP, Sloane JP, Kabarowski JH, Matutes E, Wiedemann LM. The rapid detection of clonal T-cell proliferations in patients with lymphoid disorders. Am J Pathol. 1991;138:821–8.

    PubMed  CAS  Google Scholar 

  37. Bottaro M, Berti E, Biondi A, Migone N, Crosti L. Heteroduplex analysis of T-cell receptor gamma gene rearrangements for diagnosis and monitoring of cutaneous T-cell lymphomas. Blood. 1994;83:3271–8.

    PubMed  CAS  Google Scholar 

  38. Dogan A, Morice WG. Bone marrow histopathology in peripheral T-cell lymphomas. Br J Haematol. 2004;127:140–54.

    Article  PubMed  Google Scholar 

  39. Thiele J, Zirbes TK, Kvasnicka HM, Fischer R. Focal lymphoid aggregates (nodules) in bone marrow biopsies: differentiation between benign hyperplasia and malignant lymphoma – a practical guideline. J Clin Pathol. 1999;52:294–300.

    Article  PubMed  CAS  Google Scholar 

  40. Horny HP, Lange K, Sotlar K, Valent P. Increase of bone marrow lymphocytes in systemic mastocytosis: reactive lymphocytosis or malignant lymphoma? Immunohistochemical and molecular findings on routinely processed bone marrow biopsy specimens. J Clin Pathol. 2003;56:575–8.

    Article  PubMed  Google Scholar 

  41. Braunschweig R, Baur AS, Delacretaz F, Bricod C, Benhattar J. Contribution of IgH-PCR to the evaluation of B-cell lymphoma involvement in paraffin-embedded bone marrow biopsy specimens. Am J Clin Pathol. 2003;119:634–42.

    Article  PubMed  CAS  Google Scholar 

  42. Brinckmann R, Kaufmann O, Reinartz B, Dietel M. Specificity of PCR-based clonality analysis of immunoglobulin heavy chain gene rearrangements for the detection of bone marrow involvement by low-grade B-cell lymphomas. J Pathol. 2000;190:55–60.

    Article  PubMed  CAS  Google Scholar 

  43. Franco V, Florena AM, Campesi G. Intrasinusoidal bone marrow infiltration: a possible hallmark of splenic lymphoma. Histopathology. 1996;29:571–5.

    Article  PubMed  CAS  Google Scholar 

  44. Labouyrie E, Marit G, Vial JP, Lacombe F, Fialon P, Bernard P, et al. Intrasinusoidal bone marrow involvement by splenic lymphoma with villous lymphocytes: a helpful immunohistologic feature. Mod Pathol. 1997;10:1015–20.

    PubMed  CAS  Google Scholar 

  45. Feugier P, De March AK, Lesesve JF, Monhoven N, Dorvaux V, Braun F, et al. Intravascular bone marrow accumulation in persistent polyclonal lymphocytosis: a misleading feature for B-cell neoplasm. Mod Pathol. 2004;17:1087–96.

    Article  PubMed  Google Scholar 

  46. DiGiuseppe JA, Hartmann DP, Freter C, Cossman J, Mann RB. Molecular detection of bone marrow involvement in intravascular lymphomatosis. Mod Pathol. 1997;10:33–7.

    PubMed  CAS  Google Scholar 

  47. Gaulard P, Kanavaros P, Farcet JP, Rocha FD, Haioun C, Divine M, et al. Bone marrow histologic and immunohistochemical findings in peripheral. T-cell lymphoma: a study of 38 cases. Hum Pathol. 1991;22:331–8.

    Article  PubMed  CAS  Google Scholar 

  48. Vega F, Medeiros LJ, Bueso-Ramos C, Jones D, Lai R, Luthra R, et al. Hepatosplenic gamma/delta T-cell lymphoma in bone marrow. A sinusoidal neoplasm with blastic cytologic features. Am J Clin Pathol. 2001;116:410–9.

    Article  PubMed  CAS  Google Scholar 

  49. Weirich G, Sandherr M, Fellbaum C, Richter T, Schmidt L, Kinjerski T, et al. Molecular evidence of bone marrow involvement in advanced case ot T-gamma/delta lymphoma with secondary myelofibrosis. Hum Pathol. 1998;29:761–5.

    Article  PubMed  CAS  Google Scholar 

  50. Prochorec-Sobieszek M, Rymkiewicz G, Makuch-Lasica H, Makuch-Łasica H, Majewski M, Michalak K, et al. Characteristics of T-cell large granular lymphocyte proliferations associated with neutropenia and inflammatory arthropathy. Arthritis Res Ther. 2008;10:R55.

    Article  PubMed  Google Scholar 

  51. O’Malley DP. T-cell large granular leukemia and related proliferations. Am J Clin Pathol. 2007;127:850–9.

    Article  PubMed  Google Scholar 

  52. Engels K, Oeschger S, Hansmann ML, Hillebrand M, Kriener S. Bone marrow trephines containing lymphoid aggregates from patients with rheumatoid and other autoimmune disorders frequently show clonal B-cell infiltrates. Hum Pathol. 2007;38:1402–11.

    Article  PubMed  CAS  Google Scholar 

  53. Pajor L, Lacza A, Kereskai L, Jáksó P, Egyed M, Iványi JL, et al. Increased incidence of monoclonal B-cell infiltrate in chronic myeloproliferative disorders. Mod Pathol. 2004;17:1521–30.

    Article  PubMed  Google Scholar 

  54. Kremer M, Horn T, Koch I, Dechow T, Gattenloehner S, Pfeiffer W, et al. Quantitation of the JAK2V617F mutation in microdissected bone marrow trephines: equal mutational load in myeloid lineages and rare involvement of lymphoid cells. Am J Surg Pathol. 2008;32:928–35.

    Article  PubMed  Google Scholar 

  55. Fend F, Weyrer K, Drach J, Schwaiger A, Umlauft F, Grunewald K. Immunoglobulin gene rearrangement in plasma cell dyscrasias: detection of small clonal cell populations in peripheral blood and bone marrow. Leuk Lymphoma. 1993;10:223–9.

    Article  PubMed  CAS  Google Scholar 

  56. Shanafelt TD, Ghia P, Lanasa MC, Landgren O, Rawstron AC. Monoclonal B-cell lymphocytosis (MBL): biology, natural history and clinical management. Leukemia. 2010;24:512–20.

    Article  PubMed  CAS  Google Scholar 

  57. Marti GE, Rawstron AC, Ghia P, Hillmen P, Houlston RS, Kay N, et al. Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J Haematol. 2005;130:325–32.

    Article  PubMed  Google Scholar 

  58. Robertson LE, Redman JR, Butler JJ, Osborne BM, Velasquez WS, McLaughlin P, et al. Discordant bone marrow involvement in diffuse large-cell lymphoma: a distinct clinical-pathologic entity associated with a continuous risk of relapse. J Clin Oncol. 1991;9:236–42.

    PubMed  CAS  Google Scholar 

  59. Hodges GF, Lenhardt TM, Cotelingam JD. Bone marrow involvement in large-cell lymphoma. Prognostic implications of discordant disease. Am J Clin Pathol. 1994;101:305–11.

    PubMed  CAS  Google Scholar 

  60. Kluin PM, van Krieken JH, Kleiverda K, Kluin-Nelemans HC. Discordant morphologic characteristics of B-cell lymphomas in bone marrow and lymph node biopsies. Am J Clin Pathol. 1990;94:59–66.

    PubMed  CAS  Google Scholar 

  61. Chung R, Lai R, Wei P, Lee J, Hanson J, Belch AR, et al. Concordant but not discordant bone marrow involvement in diffuse large B-cell lymphoma predicts a poor clinical outcome independent of the International Prognostic Index. Blood. 2007;110:1278–82.

    Article  PubMed  CAS  Google Scholar 

  62. Campbell J, Seymour JF, Matthews J, Wolf M, Stone J, Juneja S. The prognostic impact of bone marrow involvement in patients with diffuse large cell lymphoma varies according to the degree of infiltration and presence of discordant marrow involvement. Eur J Haematol. 2006;76:473–80.

    Article  PubMed  Google Scholar 

  63. Raynaud P, Caulet-Maugendre S, Foussard C, Salles G, Moreau A, Rossi JF, et al. T-cell lymphoid aggregates in bone marrow after rituximab therapy for B-cell follicular lymphoma: a marker of therapeutic efficacy? Hum Pathol. 2008;39:194–200.

    Article  PubMed  CAS  Google Scholar 

  64. Douglas VK, Gordon LI, Goolsby CL, White CA, Peterson LC. Lymphoid aggregates in bone marrow mimic residual lymphoma after rituximab therapy for non-Hodgkin lymphoma. Am J Clin Pathol. 1999;112:844–53.

    PubMed  CAS  Google Scholar 

  65. Elenitoba-Johnson KS, Bohling SD, Mitchell RS, Brown MS, Robetorye RS. PCR analysis of the immunoglobulin heavy chain gene in polyclonal processes can yield pseudoclonal bands as an artifact of low B cell number. J Mol Diagn. 2000;2:92–6.

    Article  PubMed  CAS  Google Scholar 

  66. Crotty PL, Smith BR, Tallini G. Morphologic, immunophenotypic, and molecular evaluation of bone marrow involvement in non-Hodgkin’s lymphoma. Diagn Mol Pathol. 1998;7:90–5.

    Article  PubMed  CAS  Google Scholar 

  67. Pittaluga S, Tierens A, Dodoo YL, Delabie J, De Wolf-Peeters C. How reliable is histologic examination of bone marrow trephine biopsy specimens for the staging of non-Hodgkin lymphoma? A study of hairy cell leukemia and mantle cell lymphoma involvement of the bone marrow trephine specimen by histologic, immunohistochemical, and polymerase chain reaction techniques. Am J Clin Pathol. 1999;111:179–84.

    PubMed  CAS  Google Scholar 

  68. Coad JE, Olson DJ, Christensen DR, Lander TA, Chibbar R, McGlennen RC, et al. Correlation of PCR-detected clonal gene rearrangements with bone marrow morphology in patients with B-lineage lymphomas. Am J Surg Pathol. 1997;21:1047–56.

    Article  PubMed  CAS  Google Scholar 

  69. Berget E, Helgeland L, Molven A, Vintermyr OK. Detection of clonality in follicular lymphoma using formalin-fixed, paraffin-embedded tissue samples and BIOMED-2 immunoglobulin primers. J Clin Pathol. 2007;64:37–41.

    Article  Google Scholar 

  70. Berenson JR, Anderson KC, Audell RA, Boccia RV, Coleman M, Dimopoulos MA, et al. Monoclonal gammopathy of undetermined significance: a consensus statement. Br J Haematol. 2010;150:28–38.

    PubMed  Google Scholar 

  71. Ibrahim HA, Menasce LP, Pomplun S, Burke M, Bower M, Naresh KN. Presence of monoclonal T-cell populations in B-cell post-transplant lymphoproliferative disorders. Mod Pathol. 2011;24:232–40.

    Article  PubMed  CAS  Google Scholar 

  72. Smith JL, Hodges E, Quin CT, McCarthy KP, Wright DH. Frequent T and B cell oligoclones in histologically and immunophenotypically characterized angioimmunoblastic lymphadenopathy. Am J Pathol. 2000;156:661–9.

    Article  PubMed  CAS  Google Scholar 

  73. Tan BT, Warnke RA, Arber DA. The frequency of B- and T-cell gene rearrangements and epstein-barr virus in T-cell lymphomas: a comparison between angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified with and without associated B-cell proliferations. J Mol Diagn. 2006;8:466–75.

    Article  PubMed  CAS  Google Scholar 

  74. Fend F, Tzankov A, Bink K, Seidl S, Quintanilla-Martinez L, Kremer M, et al. Modern techniques for the diagnostic evaluation of the trephine bone marrow biopsy: methodological aspects and applications. Prog Histochem Cytochem. 2008;42:203–52.

    Article  PubMed  Google Scholar 

  75. Lehmann U, Kreipe H. Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods. 2001;25:409–18.

    Article  PubMed  CAS  Google Scholar 

  76. Lehmann U, Bock O, Langer F, Kreipe H. Demonstration of light chain restricted clonal B-lymphoid infiltrates in archival bone marrow trephines by quantitative real-time polymerase chain reaction. Am J Pathol. 2001;159:2023–9.

    Article  PubMed  CAS  Google Scholar 

  77. Specht K, Haralambieva E, Bink K, Kremer M, Mandl-Weber S, Koch I, et al. Different mechanisms of cyclin D1 overexpression in multiple myeloma revealed by fluorescence in situ hybridization and quantitative analysis of mRNA levels. Blood. 2004;104:1120–6.

    Article  PubMed  CAS  Google Scholar 

  78. Specht K, Kremer M, Muller U, Dirnhofer S, Rosemann M, Hofler H, et al. Identification of cyclin D1 mRNA overexpression in B-cell neoplasias by real-time reverse transcription-PCR of microdissected paraffin sections. Clin Cancer Res. 2002;8:2902–11.

    PubMed  CAS  Google Scholar 

  79. Slotta-Huspenina J, Koch I, Richter M, Bink K, Kremer M, Specht K, et al. Cyclin D1 positive multiple myeloma: predominance of the short, 3’UTR-deficient transcript is associated with high cyclin D1 mRNA levels in cases with t(11;14) translocation, but does not correlate with proliferation rate or genomic deletions. Leuk Res. 2008;32:79–88.

    Article  PubMed  CAS  Google Scholar 

  80. Cook JR, Hartke M, Pettay J, Tubbs RR. Fluorescence in situ hybridization analysis of immunoglobulin heavy chain translocations in plasma cell myeloma using intact paraffin sections and simultaneous CD138 immunofluorescence. J Mol Diagn. 2006;8:459–65.

    Article  PubMed  CAS  Google Scholar 

  81. Le Maitre CL, Byers RJ, Liu Yin JA, Hoyland JA, Freemont AJ. Dual colour FISH in paraffin wax embedded bone trephines for identification of numerical and structural chromosomal abnormalities in acute myeloid leukaemia and myelodysplasia. J Clin Pathol. 2001;54:730–3.

    Article  PubMed  Google Scholar 

  82. Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res. 2004;64:1546–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falko Fend M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Fend, F., Quintanilla-Martínez, L. (2012). The Application of Molecular Techniques on Bone Marrow Trephines. In: Anagnostou, D., Matutes, E. (eds) Bone Marrow Lymphoid Infiltrates. Springer, London. https://doi.org/10.1007/978-1-4471-4174-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4174-7_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4173-0

  • Online ISBN: 978-1-4471-4174-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics