Skip to main content

The Aging Lymphocyte

  • Chapter
  • First Online:
Bone Marrow Lymphoid Infiltrates

Abstract

The life expectancy in industrialized countries has consistently increased every decade for the last 150 years. From the early 1900s to 2006, the United States alone experienced an increase in life expectancy from 49.2 to 77.7 years [1]. Although most of these increases have occurred in industrialized countries, the world as a whole has also seen improvements. It is projected that, by the year 2025, there will be more than one billion people over the age of 60 worldwide (see World Health Organization website). Increases in life expectancy reflect advances in both public health policy and improved treatments for infectious diseases. However, the increases in average human lifespan also present growing challenges to a nation’s economic, medical, social fabric, and public health programs. Older age is associated with a significantly higher incidence of various chronic conditions, such as cardiovascular disease, cancer, diabetes, neuropathologies, and immune system dysfunction. Persons with these conditions constitute a large burden on the health care system, and in many cases, the lack of adequate treatments have negative effects on quality of life and independent living. Thus, improved understanding of the fundamental molecular basis of aging is critical in order to adequately address the health of an increasingly large proportion of the population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arias E. United States life tables, 2006. National vital statistics reports. National Center for Health Statistics. 2010;58:1–40.

    Google Scholar 

  2. Rogan EM, Bryan TM, Hukku B, Maclean K, Chang AC, Moy EL, et al. Alterations in p53 and p16INK4 expression and telomere length during spontaneous immortalization of Li-Fraumeni syndrome fibroblasts. Mol Cell Biol. 1995;15:4745–53.

    PubMed  CAS  Google Scholar 

  3. Campisi J. Fragile fugue: p53 in aging, cancer and IGF signaling. Nat Med. 2004;10:231–2.

    PubMed  CAS  Google Scholar 

  4. Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB. Telomere end-replication problem and cell aging. J Mol Biol. 1992;225:951–60.

    PubMed  CAS  Google Scholar 

  5. Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol. 2010;6:347.

    PubMed  Google Scholar 

  6. Campisi J, Kim SH, Lim CS, Rubio M. Cellular senescence, cancer and aging: the telomere connection. Exp Gerontol. 2001;36:1619–37.

    PubMed  CAS  Google Scholar 

  7. Avilion AA, Piatyszek MA, Gupta J, Shay JW, Bacchetti S, Greider CW. Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues. Cancer Res. 1996;56:645–50.

    PubMed  CAS  Google Scholar 

  8. Broccoli D, Young JW, de Lange T. Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci USA. 1995;92:9082–6.

    PubMed  CAS  Google Scholar 

  9. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.

    PubMed  CAS  Google Scholar 

  10. von Zglinicki T, Saretzki G, Docke W, Lotze C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res. 1995;220:186–93.

    Google Scholar 

  11. Passos JF, von Zglinicki T. Mitochondria, telomeres and cell senescence. Exp Gerontol. 2005;40:466–72.

    PubMed  CAS  Google Scholar 

  12. Fraga MF. Genetic and epigenetic regulation of aging. Curr Opin Immunol. 2009;21:446–53.

    PubMed  CAS  Google Scholar 

  13. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA. 2005;102:10604–9.

    PubMed  CAS  Google Scholar 

  14. Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH, et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet. 2009;41:240–5.

    PubMed  CAS  Google Scholar 

  15. vB Hjelmborg J, Iachine I, Skytthe A, Vaupel JW, McGue M, Koskenvuo M, et al. Genetic influence on human lifespan and longevity. Hum Genet. 2006;119: 312–21.

    PubMed  Google Scholar 

  16. Marrer E, Dieterle F. Promises of biomarkers in drug development – a reality check. Chem Biol Drug Des. 2007;69:381–94.

    PubMed  CAS  Google Scholar 

  17. Lesko LJ, Atkinson Jr AJ. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol. 2001;41:347–66.

    PubMed  CAS  Google Scholar 

  18. Derhovanessian E, Maier AB, Beck R, Jahn G, Hahnel K, Slagboom PE, et al. Hallmark features of immunosenescence are absent in familial longevity. J Immunol. 2010;185:4618–24.

    PubMed  CAS  Google Scholar 

  19. Effros RB. Kleemeier award lecture 2008 – the canary in the coal mine: telomeres and human healthspan. J Gerontol A Biol Sci Med Sci. 2009;64:511–5.

    PubMed  Google Scholar 

  20. Marieb EN. Human anatomy. 4th ed. San Francisco: Pearson Benjamin Cummings; 2005.

    Google Scholar 

  21. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003;21:759–806.

    PubMed  CAS  Google Scholar 

  22. Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol. 2006;6:107–16.

    PubMed  CAS  Google Scholar 

  23. Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010;464:520–8.

    PubMed  CAS  Google Scholar 

  24. Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol. 2004;5:133–9.

    Google Scholar 

  25. Morrison SJ, Qian D, Jerabek L, Thiel BA, Park IK, Ford PS, et al. A genetic determinant that specifically regulates the frequency of hematopoietic stem cells. J Immunol. 2002;168:635–42.

    PubMed  CAS  Google Scholar 

  26. Henckaerts E, Geiger H, Langer JC, Rebollo P, Van Zant G, Snoeck HW. Genetically determined variation in the number of phenotypically defined hematopoietic progenitor and stem cells and in their response to early-acting cytokines. Blood. 2002;99:3947–54.

    PubMed  CAS  Google Scholar 

  27. Harrison DE. Long-term erythropoietic repopulating ability of old, young, and fetal stem cells. J Exp Med. 1983;157:1496–504.

    PubMed  CAS  Google Scholar 

  28. Sudo K, Ema H, Morita Y, Nakauchi H. Age-associated characteristics of murine hematopoietic stem cells. J Exp Med. 2000;192:1273–80.

    PubMed  CAS  Google Scholar 

  29. Guimond M, Veenstra RG, Grindler DJ, Zhang H, Cui Y, Murphy RD, et al. Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells. Nat Immunol. 2009;10:149–57.

    PubMed  CAS  Google Scholar 

  30. Mayack SR, Shadrach JL, Kim FS, Wagers AJ. Systemic signals regulate ageing and rejuvenation of blood stem cell niches. Nature. 2010;463:495–500.

    PubMed  CAS  Google Scholar 

  31. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–41.

    PubMed  CAS  Google Scholar 

  32. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003; 425:841–46.

    Google Scholar 

  33. Nilsson SK, Johnston HM, Coverdale JA. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood. 2001;97:2293229.

    Google Scholar 

  34. Tokoyoda K, Egawa T, Sugiyama T, Choi BI, Nagasawa T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity. 2004;20:707–18.

    PubMed  CAS  Google Scholar 

  35. Geiger H, Van Zant G. The aging of lympho-hematopoietic stem cells. Nat Immunol. 2002;3:329–33.

    PubMed  CAS  Google Scholar 

  36. Geiger H, Rudolph KL. Aging in the lympho-hematopoietic stem cell compartment. Trends Immunol. 2009;30:360–5.

    PubMed  CAS  Google Scholar 

  37. Walsh CM, Edinger AL. The complex interplay between autophagy, apoptosis, and necrotic signals promotes T-cell homeostasis. Immunol Rev. 2010;236:95–109.

    PubMed  CAS  Google Scholar 

  38. Nitta T, Murata S, Ueno T, Tanaka K, Takahama Y. Thymic microenvironments for T-cell repertoire formation. Adv Immunol. 2008;99:59–94.

    PubMed  CAS  Google Scholar 

  39. Montecino-Rodriquez E, Min H, Dorshkind K. Reevaluating current models of thymic involution. Semin Immunol. 2005;17:356–61.

    PubMed  CAS  Google Scholar 

  40. Sutherland JS, Goldberg GL, Hammett MV, Uldrich AP, Berzins SP, Heng TS, et al. Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol. 2005;175:2741–53.

    Google Scholar 

  41. Heng TS, Goldberg GL, Gray DH, Sutherland JS, Chidgey AP, Boyd RL. Effects of castration on thymocyte development in two different models of thymic involution. J Immunol. 2005;175:2982–93.

    PubMed  CAS  Google Scholar 

  42. de Mello-Coelho V, Gagnerault MC, Souberbielle JC, Strasburger CJ, Savino W, Dardenne M, et al. Growth hormone and its receptor are expressed in human thymic cells. Endocrinology. 1998;139:3837–42.

    PubMed  Google Scholar 

  43. Bresson JL, Jeay S, Gagnerault MC, Kayser C, Beressi N, Wu Z, et al. Growth hormone (GH) and prolactin receptors in human peripheral blood mononuclear cells: relation with age and GH-binding protein. Endocrinology. 1999;140:3203–9.

    PubMed  CAS  Google Scholar 

  44. Alpdogan O, Muriglan SJ, Kappel BJ, Doubrovina E, Schmaltz C, Schiro R, et al. Insulin-like growth factor-I enhances lymphoid and myeloid reconstitution after allogeneic bone marrow transplantation. Transplantation. 2003;75:1977–83.

    PubMed  CAS  Google Scholar 

  45. Phillips JA, Brondstetter TI, English CA, Lee HE, Virts EL, Thoman ML. IL-7 gene therapy in aging restores early thymopoiesis without reversing involution. J Immunol. 2004;173:4867–74.

    PubMed  CAS  Google Scholar 

  46. Sportes C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR, et al. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med. 2008;205:1701–14.

    PubMed  CAS  Google Scholar 

  47. Goldrath AW, Bevan MJ. Selecting and maintaining a diverse T-cell repertoire. Nature. 1999;402:255–62.

    PubMed  CAS  Google Scholar 

  48. Paterson AM, Vanguri VK, Sharpe AH. SnapShot: B7/CD28 costimulation. Cell. 2009;137:974–e1.

    PubMed  CAS  Google Scholar 

  49. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.

    PubMed  CAS  Google Scholar 

  50. Garcia GG, Miller RA. Age-dependent defects in TCR-triggered cytoskeletal rearrangement in CD4+ T cells. J Immunol. 2002;169:5021–7.

    PubMed  Google Scholar 

  51. Haynes L, Linton PJ, Eaton SM, Tonkonogy SL,Swain SL. Interleukin 2, but not other common gamma chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naive T cells of aged mice. J Exp Med. 1999;190:1013–24.

    PubMed  CAS  Google Scholar 

  52. Fann M, Chiu WK, Wood 3rd WH, Levine BL, Becker KG, Weng NP. Gene expression characteristics of CD28null memory phenotype CD8+ T cells and its implication in T-cell aging. Immunol Rev. 2005;205: 190–206.

    PubMed  CAS  Google Scholar 

  53. Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med. 2008;205:711–23.

    PubMed  CAS  Google Scholar 

  54. Ahmed M, Lanzer KG, Yager EJ, Adams PS, Johnson LL, Blackman MA. Clonal expansions and loss of receptor diversity in the naive CD8 T cell repertoire of aged mice. J Immunol. 2009;182:784–92.

    PubMed  CAS  Google Scholar 

  55. Messaoudi I, Lemaoult J, Guevara-Patino JA, Metzner BM, Nikolich-Zugich J. Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense. J Exp Med. 2004;200:1347–58.

    PubMed  CAS  Google Scholar 

  56. Wells AD. New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J Immunol. 2009;182:7331–41.

    PubMed  CAS  Google Scholar 

  57. Effros RB, Dagarag M, Spaulding C, Man J. The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev. 2005;205:147–57.

    PubMed  CAS  Google Scholar 

  58. Czesnikiewicz-Guzik M, Lee WW, Cui D, Hiruma Y, Lamar DL, Yang ZZ, et al. T cell subset-specific susceptibility to aging. Clin Immunol. 2008;127:107–18.

    PubMed  CAS  Google Scholar 

  59. Vallejo AN, Brandes JC, Weyand CM, Goronzy JJ. Modulation of CD28 expression: distinct regulatory pathways during activation and replicative senescence. J Immunol. 1999;162:6572–9.

    PubMed  CAS  Google Scholar 

  60. Parish ST, Wu JE, Effros RB. Modulation of T lymphocyte replicative senescence via TNF-{alpha} inhibition: role of caspase-3. J Immunol. 2009;182:4237–43.

    PubMed  CAS  Google Scholar 

  61. Parish ST, Wu JE, Effros RB. Sustained CD28 expression delays multiple features of replicative senescence in human CD8 T lymphocytes. J Clin Immunol. 2010;30:798–805.

    PubMed  CAS  Google Scholar 

  62. Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol. 2002;2:116–26.

    PubMed  CAS  Google Scholar 

  63. Mo R, Chen J, Han Y, Bueno-Cannizares C, Misek DE, Lescure PA, et al. T cell chemokine receptor expression in aging. J Immunol. 2003;170:895–904.

    PubMed  CAS  Google Scholar 

  64. Boursalian TE, Golob J, Soper DM, Cooper CJ, Fink PJ. Continued maturation of thymic emigrants in the periphery. Nat Immunol. 2004;5:418–25.

    PubMed  CAS  Google Scholar 

  65. Goronzy JJ, Weyand CM. T cell development and receptor diversity during aging. Curr Opin Immunol. 2005;17:468–75.

    PubMed  CAS  Google Scholar 

  66. Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL. CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc Natl Acad Sci USA. 2003;100:15053–8.

    PubMed  CAS  Google Scholar 

  67. Eysteinsdottir JH, Freysdottir J, Haraldsson A, Stefansdottir J, Skaftadottir I, Helgason H, et al. The influence of partial or total thymectomy during open heart surgery in infants on the immune function later in life. Clin Exp Immunol. 2004;136:349–55.

    PubMed  CAS  Google Scholar 

  68. Davenport MP, Fazou C, McMichael AJ, Callan MF. Clonal selection, clonal senescence, and clonal succession: the evolution of the T cell response to infection with a persistent virus. J Immunol. 2002;168:3309–17.

    PubMed  CAS  Google Scholar 

  69. Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol. 2002;169:1984–92.

    PubMed  CAS  Google Scholar 

  70. Dagarag M, Evazyan T, Rao N, Effros RB. Genetic manipulation of telomerase in HIV-specific CD8+ T cells: enhanced antiviral functions accompany the increased proliferative potential and telomere length stabilization. J Immunol. 2004;173:6303–11.

    PubMed  CAS  Google Scholar 

  71. Effros RB, Boucher N, Porter V, Zhu X, Spaulding C, Walford RL, et al. Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol. 1994;29:601–9.

    PubMed  CAS  Google Scholar 

  72. Effros RB, Zhu X, Walford RL. Stress response of senescent T lymphocytes: reduced hsp70 is independent of the proliferative block. J Gerontol. 1994;49:B65–70.

    PubMed  CAS  Google Scholar 

  73. Valenzuela HF, Effros RB. Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol. 2002;105:117–25.

    PubMed  CAS  Google Scholar 

  74. Vaziri H, Schachter F, Uchida I, Wei L, Zhu X, Effros R, et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet. 1993;52:661–7.

    PubMed  CAS  Google Scholar 

  75. Yang OO, Lin H, Dagarag M, Ng HL, Effros RB, Uittenbogaart CH. Decreased perforin and granzyme B expression in senescent HIV-1-specific cytotoxic T lymphocytes. Virology. 2005;332:16–9.

    PubMed  CAS  Google Scholar 

  76. Goronzy JJ, Fulbright JW, Crowson CS, Poland GA, O’Fallon WM, Weyand CM. Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. J Virol. 2001;75:12182–7.

    PubMed  CAS  Google Scholar 

  77. Saurwein-Teissl M, Lung TL, Marx F, Gschosser C, Asch E, Blasko I, et al. Lack of antibody production following immunization in old age: association with CD8(+)CD28(−) T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J Immunol. 2002;168:5893–9.

    PubMed  CAS  Google Scholar 

  78. Cortesini R, LeMaoult J, Ciubotariu R, Cortesini NS. CD8+ CD28− T suppressor cells and the induction of antigen-specific, antigen-presenting cell-mediated suppression of Th reactivity. Immunol Rev. 2001;182:201–6.

    PubMed  CAS  Google Scholar 

  79. Filaci G, Fenoglio D, Fravega M, Ansaldo G, Borgonovo G, Traverso P, et al. CD8+ CD28− T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J Immunol. 2007;179:4323–34.

    PubMed  CAS  Google Scholar 

  80. Weng NP, Levine BL, June CH, Hodes RJ. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci USA. 1995;92:11091–4.

    PubMed  CAS  Google Scholar 

  81. Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity. 2008;28:639–50.

    PubMed  CAS  Google Scholar 

  82. Lund FE, Randall TD. Effector and regulatory B cells: modulators of CD4(+) T cell immunity. Nat Rev Immunol. 2010;10:236–47.

    PubMed  CAS  Google Scholar 

  83. Rau FC, Dieter J, Luo Z, Priest SO, Baumgarth N. B7-1/2 (CD80/CD86) direct signaling to B cells enhances IgG secretion. J Immunol. 2009;183:7661–71.

    PubMed  CAS  Google Scholar 

  84. Kasprowicz DJ, Kohm AP, Berton MT, Chruscinski AJ, Sharpe A, Sanders VM. Stimulation of the B cell receptor, CD86 (B7-2), and the beta 2-adrenergic receptor intrinsically modulates the level of IgG1 and IgE produced per B cell. J Immunol. 2000;165:680–90.

    PubMed  CAS  Google Scholar 

  85. Cerutti A. The regulation of IgA class switching. Nat Rev Immunol. 2008;8:421–34.

    PubMed  CAS  Google Scholar 

  86. Chung JB, Silverman M, Monroe JG. Transitional B cells: step by step towards immune competence. Trends Immunol. 2003;24:343–9.

    PubMed  CAS  Google Scholar 

  87. Miller JP, Allman D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol. 2003;171:2326–30.

    PubMed  CAS  Google Scholar 

  88. Kline GH, Hayden TA, Klinman NR. B cell maintenance in aged mice reflects both increased B cell longevity and decreased B cell generation. J Immunol. 1999;162:3342–9.

    PubMed  CAS  Google Scholar 

  89. Miller JP, Cancro MP. B cells and aging: balancing the homeostatic equation. Exp Gerontol. 2007;42:396–9.

    PubMed  CAS  Google Scholar 

  90. Shi Y, Yamazaki T, Okubo Y, Uehara Y, Sugane K, Agematsu K. Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol. 2005;175:3262–7.

    PubMed  CAS  Google Scholar 

  91. Manz RA, Thiel A, Radbruch A. Lifetime of plasma cells in the bone marrow. Nature. 1997;388:133–1334.

    PubMed  CAS  Google Scholar 

  92. Gibson KL, Wu YC, Barnett Y, Duggan O, Vaughan R, Kondeatis E, et al. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell. 2009;8:18–25.

    PubMed  CAS  Google Scholar 

  93. Frasca D, Landin AM, Lechner SC, Ryan JG, Schwartz R, Riley RL, et al. Aging down-regulates the transcription factor E2A, activation-induced cytidine deaminase, and Ig class switch in human B cells. J Immunol. 2008;180:5283–90.

    PubMed  CAS  Google Scholar 

  94. Frasca D, Blomberg BB. Effects of aging on B cell function. Curr Opin Immunol. 2009;21:425–30.

    PubMed  CAS  Google Scholar 

  95. Nussenzweig MC, Alt FW. Antibody diversity: one enzyme to rule them all. Nat Med. 2004;10:1304–5.

    PubMed  CAS  Google Scholar 

  96. Dorsett Y, McBride KM, Jankovic M, Gazumyan A, Thai TH, Robbiani DF, et al. MicroRNA-155 ­suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity. 2008;28:630–8.

    PubMed  CAS  Google Scholar 

  97. Nicoletti C, Yang X, Cerny J. Repertoire diversity of antibody response to bacterial antigens in aged mice. III. Phosphorylcholine antibody from young and aged mice differ in structure and protective activity against infection with Streptococcus pneumoniae. J Immunol. 1993;150:543–9.

    PubMed  CAS  Google Scholar 

  98. Cherif H, Landgren O, Konradsen HB, Kalin M, Bjorkholm M. Poor antibody response to pneumococcal polysaccharide vaccination suggests increased susceptibility to pneumococcal infection in splenectomized patients with hematological diseases. Vaccine. 2006;24:75–81.

    PubMed  CAS  Google Scholar 

  99. Banerjee M, Mehr R, Belelovsky A, Spencer J, Dunn-Walters DK. Age- and tissue-specific differences in human germinal center B cell selection revealed by analysis of IgVH gene hypermutation and lineage trees. Eur J Immunol. 2002;32:1947–57.

    PubMed  CAS  Google Scholar 

  100. Zheng B, Han S, Takahashi Y, Kelsoe G. Immunosenescence and germinal center reaction. Immunol Rev. 1997;160:63–77.

    PubMed  CAS  Google Scholar 

  101. Fang M, Roscoe F, Sigal LJ. Age-dependent susceptibility to a viral disease due to decreased natural killer cell numbers and trafficking. J Exp Med. 2010;207:2369–81.

    PubMed  CAS  Google Scholar 

  102. Ritz BW, Aktan I, Nogusa S, Gardner EM. Energy restriction impairs natural killer cell function and increases the severity of influenza infection in young adult male C57BL/6 mice. J Nutr. 2008;138:2269–75.

    PubMed  CAS  Google Scholar 

  103. Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Curr Opin Immunol. 2010;22:507–13.

    PubMed  CAS  Google Scholar 

  104. DePinho RA. The age of cancer. Nature. 2000;408:248–54.

    PubMed  CAS  Google Scholar 

  105. Campisi J. Cancer and ageing: rival demons? Nat Rev Cancer. 2003;3:339–49.

    PubMed  CAS  Google Scholar 

  106. Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M, Blasco MA. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol. 2010;191:1299–313.

    PubMed  CAS  Google Scholar 

  107. Oller AR, Rastogi P, Morgenthaler S, Thilly WG. A statistical model to estimate variance in long term-low dose mutation assays: testing of the model in a human lymphoblastoid mutation assay. Mutat Res. 1989;216:149–61.

    PubMed  CAS  Google Scholar 

  108. Jackson AL, Loeb LA. The mutation rate and cancer. Genetics. 1998;148:1483–90.

    PubMed  CAS  Google Scholar 

  109. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA. 1992;89:10114–8.

    PubMed  CAS  Google Scholar 

  110. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990;346:866–8.

    PubMed  CAS  Google Scholar 

  111. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature. 2000;406:641–5.

    PubMed  CAS  Google Scholar 

  112. Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992;11:1921–9.

    PubMed  CAS  Google Scholar 

  113. Roman E, Smith AG. Epidemiology of lymphomas. Histopathology. 2011;58:4–14.

    PubMed  Google Scholar 

  114. Jaffe E. Pathology and genetics of tumours of haematopoietic and lymphoid tissue. Lyon: IARC Press; 2001.

    Google Scholar 

  115. Alexander DD, Mink PJ, Adami HO, Chang ET, Cole P, Mandel JS, et al. The non-Hodgkin lymphomas: a review of the epidemiologic literature. Int J Cancer. 2007;12:1–39.

    Google Scholar 

  116. Dal Maso L, Serraino D, Franceschi S. Epidemiology of AIDS-related tumours in developed and developing countries. Eur J Cancer. 2001;37:1188–201.

    PubMed  CAS  Google Scholar 

  117. Miller RA, Chrisp C. T cell subset patterns that predict resistance to spontaneous lymphoma, mammary adenocarcinoma, and fibrosarcoma in mice. J Immunol. 2002;169:1619–25.

    PubMed  CAS  Google Scholar 

  118. Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A. Cytomegalovirus and human immunosenescence. Rev Med Virol. 2009;19:47–56.

    PubMed  CAS  Google Scholar 

  119. Pawelec G, Akbar A, Caruso C, Effros R, Grubeck-Loebenstein B, Wikby A. Is immunosenescence infectious? Trends Immunol. 2004;25:406–10.

    PubMed  CAS  Google Scholar 

  120. Kauffman CA. Fungal infections in older adults. Clin Infect Dis. 2001;33:550–5.

    PubMed  CAS  Google Scholar 

  121. Fauce SR, Jamieson BD, Chin AC, Mitsuyasu RT, Parish ST, Ng HL, et al. Telomerase-based pharmacologic enhancement of antiviral function of human CD8+ T lymphocytes. J Immunol. 2008;181:7400–6.

    PubMed  CAS  Google Scholar 

  122. Harley CB, Liu W, Blasco M, Vera E, Andrews WH, Briggs LA, et al. A natural product telomerase activator as part of a health maintenance program. Rejuvenation Res. 2010;14:45–56.

    PubMed  Google Scholar 

  123. van den Brink MR, Alpdogan O, Boyd RL. Strategies to enhance T-cell reconstitution in immunocompromised patients. Nat Rev Immunol. 2004;4:856–67.

    PubMed  Google Scholar 

  124. Markert ML, Sarzotti M, Ozaki DA, Sempowski GD, Rhein ME, Hale LP, et al. Thymus transplantation in complete DiGeorge syndrome: immunologic and safety evaluations in 12 patients. Blood. 2003;102:1121–30.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Brenda Molgora for assistance with the artwork. Research described in this chapter has been supported by funds from the National Institutes of Health (AG 023720 and R01AG032422 to RBE) and RevGenetics (to HFV). Dr. Valenzuela is currently a Visiting Scholar at UCLA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hector F. Valenzuela Ph.D. or Rita B. Effros Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Valenzuela, H.F., Effros, R.B. (2012). The Aging Lymphocyte. In: Anagnostou, D., Matutes, E. (eds) Bone Marrow Lymphoid Infiltrates. Springer, London. https://doi.org/10.1007/978-1-4471-4174-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4174-7_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4173-0

  • Online ISBN: 978-1-4471-4174-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics