Skip to main content

A Step Forward in the Diagnosis of B-Cell Lymphomas in the Bone Marrow

  • Chapter
  • First Online:
Book cover Bone Marrow Lymphoid Infiltrates

Abstract

Bone marrow (BM) examinations are carried out as a cornerstone procedure for diagnosis, staging and monitoring of non-Hodgkin lymphomas (NHL). This chapter will deal with the current investigations focusing on the BM findings in secondary involvement of B-cell lymphomas. Recent “World Health Organization (WHO) Classification of Tumours of Haematopoietic and Lymphoid Tissues” includes morphologic, immunophenotypic, cytogenetic, and molecular genetic data that define the disease entities [1]. Each entity described in this chapter will be discussed on the basis of a combination of these studies used in routine diagnosis of lymphoid malignancies. BM is occasionally examined for primary diagnosis of lymphoma patients, initial assessment of cytopenias of unknown etiology, especially when there’s no accessible site of extramedullary disease or when surgical procedures are risky because of hazardous complications of anesthesia due to the general condition of the patients or diseases leading to bleeding diathesis. However, most BM examination, in the context of NHL, are performed to determine stage of disease, assessment of minimal residual disease (MRD) or relapse during follow-up, monitoring response to therapy, evaluation of hematopoietic reserve, and evaluation of pre-transplant status of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardimam JW, editors. Mature B-cell neoplasms. Chap 10: WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC Press; 2008, p. 179–267.

    Google Scholar 

  2. Arber DA, George TI. Bone marrow biopsy involvement by non-Hodgkin’s lymphoma: frequency of lymphoma types, patterns, blood involvement, and discordance with other sites in 450 specimens. Am J Surg Pathol. 2005;29:1549–57.

    Article  PubMed  Google Scholar 

  3. Zhang QY, Foucar K. Bone marrow involvement by Hodgkin and non-Hodgkin lymphomas. Hematol Oncol Clin North Am. 2009;23:873–902.

    Article  PubMed  Google Scholar 

  4. Talaulikar D, Shadbolt B, McNiven M, Dahlstrom JE. DNA amplification from formalin-fixed decalcified paraffin-embedded bone marrow trephine specimens: does the duration of storage matter? Pathology. 2008;40:702–6.

    Article  CAS  PubMed  Google Scholar 

  5. Wang J, Weiss LM, Chang KL, Slovak ML, Gaal K, Forman SJ, et al. Diagnostic utility of bilateral bone marrow examination: significance of morphologic and ancillary technique study in malignancy. Cancer. 2002;94:1522–31.

    Article  PubMed  Google Scholar 

  6. Campbell JK, Matthews JP, Seymour JF, Wolf MM, Juneja SK. Optimum trephine length in the assessment of bone marrow involvement in patients with diffuse large cell lymphoma. Ann Oncol. 2003;14:273–6.

    Article  CAS  PubMed  Google Scholar 

  7. Duggan PR, Easton D, Luider J, Auer IA. Bone marrow staging of patients with non-Hodgkin lymphoma by flow cytometry: correlation with morphology. Cancer. 2000;88:894–9.

    Article  CAS  PubMed  Google Scholar 

  8. Morice WG, Kurtin PJ, Hodnefield JM, Shanafelt TD, Hoyer JD, Remstein ED, et al. Predictive value of blood and bone marrow flow cytometry in B-cell lymphoma classification: comparative analysis of flow cytometry and tissue biopsy in 252 patients. Mayo Clin Proc. 2008;83:776–85.

    Article  PubMed  Google Scholar 

  9. Costa ES, Pedreira CE, Barrena S, Lecrevisse Q, Flores J, Quijano S, On Behalf of the EuroFlow Consortium, et al. Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: a step forward in the standardization of clinical immunophenotyping. Leukemia. 2010;24:1927–33.

    Article  CAS  PubMed  Google Scholar 

  10. Mancuso P, Calleri A, Antoniotti P, Quarna J, Pruneri G, Bertolini F. If it is in the marrow, is it also in the blood? An analysis of 1,000 paired samples from patients with B-cell non-Hodgkin lymphoma. BMC Cancer. 2010;10:644–9.

    Article  PubMed  Google Scholar 

  11. Merli M, Arcaini L, Boveri E, Rattotti S, Picone C, Passamonti F, et al. Assessment of bone marrow involvement in non-Hodgkin’s lymphomas: comparison between histology and flow cytometry. Eur J Haematol. 2010;85:405–15.

    Article  PubMed  Google Scholar 

  12. Huh HJ, Min HC, Cho HI, Chae SL, Lee DS. Investigation of bone marrow involvement in malignant lymphoma using fluorescence in situ hybridization: possible utility in the detection of micrometastasis. Cancer Genet Cytogenet. 2008;186:1–5.

    Article  CAS  PubMed  Google Scholar 

  13. Evans PA, Pott Ch, Groenen PJ, Salles G, Davi F, Berger F, et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia. 2007;21:207–14.

    Article  CAS  PubMed  Google Scholar 

  14. Hebeda KM, Van Altena MC, Rombout P, Van Krieken JH, Groenen PJ. PCR clonality detection in Hodgkin lymphoma. J Hematopathol. 2009;2:34–41.

    Article  CAS  PubMed  Google Scholar 

  15. Ilgenfritz RB, Kayasut K, Le Tourneau A, Calendini OA, Quafi L, Marzac C, et al. Correlation between molecular and histopathological diagnoses of B cell lymphomas in bone marrow biopsy and aspirates. J Clin Pathol. 2009;62:357–60.

    Article  CAS  PubMed  Google Scholar 

  16. Aster JC, Longtine JA. Detection of BCL2 rearrangements in follicular lymphoma. Am J Pathol. 2002;160:759–63.

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt B, Kremer M, Götze K, John K, Peschel C, Höfler H, et al. Bone marrow involvement in follicular lymphoma: comparison of histology and flow cytometry as staging procedures. Leuk Lymphoma. 2006;47:1857–62.

    Article  PubMed  Google Scholar 

  18. Iancu D, Hao S, Lin P, Anderson SK, Jorgensen JL, McLaughlin P, et al. Follicular lymphoma in staging bone marrow specimens: correlation of histologic findings with the results of flow cytometry immunophenotypic analysis. Arch Pathol Lab Med. 2007;131:282–7.

    PubMed  Google Scholar 

  19. Bognár A, Csernus B, Bödör C, Reiniger L, Szepesi A, Töth E, et al. Clonal selection in the bone marrow involvement of follicular lymphoma. Leukemia. 2005;19:1656–62.

    Article  PubMed  Google Scholar 

  20. Campbell LJ. Cytogenetics of lymphomas. Pathology. 2005;37:493–507.

    Article  CAS  PubMed  Google Scholar 

  21. Gu K, Chan WC, Hawley RC. Practical detection of t(14;18)(IgH/BCL2) in follicular lymphoma. Arch Pathol Lab Med. 2008;132:1355–61.

    CAS  PubMed  Google Scholar 

  22. Belaud-Rotureau MA, Parrens M, Carrere N, Turmo M, Ferrer J, de Mascarel A, et al. Interphase fluorescence in situ hybridization is more sensitive than BIOMED-2 polymerase chain reaction protocol in detecting IGH-BCL2 rearrangement in both fixed and frozen lymph node with follicular lymphoma. Hum Pathol. 2007;38:365–72.

    Article  CAS  PubMed  Google Scholar 

  23. Godon A, Moreau A, Talmant P, Baranger-Papot L, Geneviève F, Milpied N, et al. Is t(14;18)(q32;q21) a constant finding in follicular ymphoma?: an interphase FISH study on 63 patients. Leukemia. 2003;17:255–9.

    Article  CAS  PubMed  Google Scholar 

  24. Limpens J, Stad R, Vos C, de Vlaam C, de Jong D, van Ommen GJ, et al. Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood. 1995;85:2528–36.

    CAS  PubMed  Google Scholar 

  25. Schmitt C, Balogh B, Grundt A, Buchholtz C, Leo A, Benner A, et al. The bcl-2/IgH rearrangement in a population of 204 healthy individuals: occurrence, age and gender distribution, breakpoints, and detection method validity. Leuk Res. 2006;30:745–50.

    Article  CAS  PubMed  Google Scholar 

  26. Halldórsdóttir AM, Zehbbauer BA, Burack WR. Application of BIOMED-2 clonality assays to formalin-fixed paraffin embedded follicular lymphoma specimens: superior performance of the IGK assays compared to IGH for suboptimal specimens. Leuk Lymphoma. 2007;48:1338–43.

    Article  PubMed  Google Scholar 

  27. Berget E, Helgeland L, Molven A, Vintermyr OK. Detection of clonality in follicular lymphoma using formalin-fixed, paraffin-embedded tissue samples and BIOMED-2 immunoglobulin primers. J Clin Pathol. 2011;64:37–41.

    Article  CAS  PubMed  Google Scholar 

  28. Buckstein R, Pennell N, Berinstein NL. What is remission in follicular lymphoma and what is its relevance? Best Pract Res Clin Haematol. 2005;18:27–56.

    Article  PubMed  Google Scholar 

  29. Mandigers CM, Meijerink JP, Van’t Veer MB, Mensink EJBM, Raemaekers JMM. Dynamics of circulating t(14;18)-positive cells during first-line and subsequent lines of treatment in follicular lymphoma. Ann Hematol. 2003;82:743–9.

    Article  CAS  PubMed  Google Scholar 

  30. Hirt C, Schüler F, Kiefer T, Schwenke C, Haas A, Niederwieser D, et al. Rapid and sustained clearance of circulating lymphoma cells after chemotherapy plus rituximab: clinical significance of quantitative t(14;18) PCR monitoring in advanced stage follicular lymphoma patients. Br J Haematol. 2008;141:631–40.

    Article  CAS  PubMed  Google Scholar 

  31. Arcaini L, Montanari F, Alessandrino EP, Tucci A, Brusamolino E, Gargantini L, et al. Immuno­chemotherapy with in vivo purging and autotransplant induces long clinical and molecular ­remission in advanced relapsed and refractory follicular lymphoma. Ann Oncol. 2008;19:1331–5.

    Article  CAS  PubMed  Google Scholar 

  32. Belaud-Rotureau MA, Parrens M, Dubus P, Garroste JC, de Mascarel A, Merlio JP. A comparative analysis of FISH, RT-PCR, PCR, and immunohistochemistry for the diagnosis of mantle cell lymphomas. Mod Pathol. 2002;15:517–25.

    Article  PubMed  Google Scholar 

  33. Orchard J, Garand R, Davis Z, Babbage G, Sahota S, Matutes E, et al. A subset of t(11;14) lymphoma with mantle cell features displays mutated IgVH genes and includes patients with good prognosis, nonnodal disease. Blood. 2003;101:4975–81.

    Article  CAS  PubMed  Google Scholar 

  34. Fernàndez V, Salamero O, Espinet B, Solė F, Royo C, Navarro A, et al. Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma. Cancer Res. 2010;70:1408–18.

    Article  PubMed  Google Scholar 

  35. Tiemann M, Schrader C, Klapper W, Dreyling MH, Campo E, Norton A, European MCL Network, et al. Histopathology, cell proliferation indices and clinical outcome in 304 patients with mantle cell lymphoma (MCL): a clinicopathological study from the European MCL Network. Br J Haematol. 2005;131:29–38.

    Article  PubMed  Google Scholar 

  36. Katzenberger T, Petzoldt C, Höller S, Mäder U, Kalla L, Adam P, et al. The Ki67 proliferation index is a quantitative indicator of clinical risk in mantle cell lymphoma. Blood. 2006;107:3407.

    Article  CAS  PubMed  Google Scholar 

  37. Determann O, Hoster E, Ott G, Wolfram Bernd H, Loddenkemper C, Leo Hansmann M, European Mantle Cell Lymphoma Network and the German Low Grade Lymphoma Study Group, et al. Ki-67 predicts outcome in advanced-stage mantle cell lymphoma patients treated with anti-CD20 immunochemotherapy: results from randomized trials of the European MCL Network and the German Low Grade Lymphoma Study Group. Blood. 2008;111:2385–7.

    Article  CAS  PubMed  Google Scholar 

  38. Guglielmelli T, Giugliano E, Cappia S, Papotti M, Saglio G. Frequency and distribution of trisomy 11 in multiple myeloma patients: relation with overexpression of CCND1 and t(11;14). Cancer Genet Cytogenet. 2007;173:51–6.

    Article  CAS  PubMed  Google Scholar 

  39. de Boer CJ, Kluin-Nelemans JC, Dreef E, Kester MG, Kluin PM, Schuuring E, et al. Involvement of the CCND1 gene in hairy cell leukemia. Ann Oncol. 1996;7:251–6.

    Article  PubMed  Google Scholar 

  40. Fu K, Weisenburger DD, Greiner TC, Dave S, Wright G, Rosenwald A, et al. Lymphoma/leukemia molecular profiling project, cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood. 2005;106:4315–21.

    Article  CAS  PubMed  Google Scholar 

  41. Ek S, Dictor M, Jerkeman M, Jirström K, Borrebaeck CA. Nuclear expression of the non B-cell lineage Sox11 transcription factor identifies mantle cell lymphoma. Blood. 2008;111:800–5.

    Article  CAS  PubMed  Google Scholar 

  42. Mozos A, Royo C, Hartmann E, De Jong D, Baró C, Valera A, et al. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica. 2009;94:1555–62.

    Article  CAS  PubMed  Google Scholar 

  43. Jevremovic D, Dronca RS, Morice WG, McPhail ED, Kurtin PJ, Zent CS, et al. CD5+ B-cell lymphoproliferative disorders: beyond chronic lymphocytic leukemia and mantle cell lymphoma. Leuk Res. 2010;34:1235–8.

    Article  CAS  PubMed  Google Scholar 

  44. Ho AK, Hill S, Preobrazhensky SN, Miller ME, Chen Z, Bahler DW. Small B-cell neoplasms with typical mantle cell lymphoma immunophenotypes often include chronic lymphocytic leukemias. Am J Clin Pathol. 2009;131:27–32.

    Article  PubMed  Google Scholar 

  45. Brizova H, Kalinova M, Krskova L, Mrhalova M, Kodet R. Quantitative monitoring of cyclin D1 expression: a molecular marker for minimal residual disease monitoring and a predictor of the disease outcome in patients with mantle cell lymphoma. Int J Cancer. 2008;123:2865–70.

    Article  CAS  PubMed  Google Scholar 

  46. Berger F, Felman P, Thieblemont C, Pradier T, Baseggio L, Bryon PA, et al. Non-MALT marginal zone B-cell lymphomas: a description of clinical presentation and outcome in 124 patients. Blood. 2000;95:1950–6.

    CAS  PubMed  Google Scholar 

  47. Inamdar KV, Medeiros LJ, Jorgensen JL, Amin HM, Schlette EJ. Bone marrow involvement by marginal zone B-cell lymphomas of different types. Am J Clin Pathol. 2008;129:714–22.

    Article  PubMed  Google Scholar 

  48. Boveri E, Arcaini L, Merli M, Passamonti F, Rizzi S, Vanelli L, et al. Bone marrow histology in marginal zone B-cell lymphomas: correlation with clinical parameters and flow cytometry in 120 patients. Ann Oncol. 2009;20:129–36.

    Article  CAS  PubMed  Google Scholar 

  49. Pich A, Fraire F, Fornari A, Bonino LD, Godio L, Bortolin P, et al. Intrasinusoidal bone marrow infiltration and splenic marginal zone lymphoma: a quantitative study. Eur J Haematol. 2006;76:392–8.

    Article  PubMed  Google Scholar 

  50. Traverse-Glehen A, Baseggio L, Bauchu EC, Morel D, Gazzo S, Ffrench M, et al. Splenic red pulp lymphoma with numerous basophilic villous lymphocytes: a distinct clinicopathologic and molecular entity? Blood. 2008;111:2253–60.

    Article  CAS  PubMed  Google Scholar 

  51. Kojima M, Sato E, Oshimi K, Murase T, Koike T, Tsunoda S, et al. Characteristics of CD5-positive splenic marginal zone lymphoma with leukemic manifestation; clinical, flow cytometry, and histopathological findings of 11 cases. J Clin Exp Hematop. 2010;50:107–12.

    Article  PubMed  Google Scholar 

  52. Baseggio L, Traverse-Glehen A, Petinataud F, ­Callet-Bauchu E, Berger F, Ffrench M, et al. CD5 expression identifies a subset of splenic marginal zone lymphomas with higher lymphocytosis: a clinico-pathological, cytogenetic and molecular study of 24 cases. Haematologica. 2010;95:604–12.

    Article  CAS  PubMed  Google Scholar 

  53. Salido M, Baró C, Oscier D, Stamatopoulos K, Dierlamm J, Matutes E, et al. Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell Lymphoma Group. Blood. 2010;116:1479–88.

    Article  CAS  PubMed  Google Scholar 

  54. Dong HY, Weisberger J, Liu Z, Tugulea S. Immuno­phenotypic analysis of CD103+ B-lymphoproliferative disorders: hairy cell leukemia and its mimics. Am J Clin Pathol. 2009;131:586–95.

    Article  CAS  PubMed  Google Scholar 

  55. Hermine O, Lefrère F, Bronowicki JP, Mariette X, Jondeau K, Eclache-Saudreau V, et al. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med. 2002;347:89–94.

    Article  CAS  PubMed  Google Scholar 

  56. Algara P, Mateo MS, Sanchez-Beato M, Mollejo M, Navas IC, Romero L, et al. Analysis of the IgV(H) somatic mutations in splenic marginal zone lymphoma defines a group of unmutated cases with frequent 7q deletion and adverse clinical course. Blood. 2002;99:1299–304.

    Article  CAS  PubMed  Google Scholar 

  57. Remstein ED, Dogan A, Einerson RR, Paternoster SF, Fink SR, Law M, et al. The incidence and anatomic site specificity of chromosomal translocations in primary extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) in North America. Am J Surg Pathol. 2006;30:1546–53.

    Article  PubMed  Google Scholar 

  58. Nathwani BN, Anderson JR, Armitage JO, Cavalli F, Diebold J, Drachenberg MR, et al. Marginal zone B-cell lymphoma: a clinical comparison of nodal and mucosa-associated lymphoid tissue types. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol. 1999;17:2486–92.

    CAS  PubMed  Google Scholar 

  59. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11.

    Article  CAS  PubMed  Google Scholar 

  60. Snuderl M, Kolman OK, Chen YB, Hsu JJ, Ackerman AM, Dal Cin P, et al. B-cell lymphomas with concurrent IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and pathologic features distinct from Burkitt lymphoma and diffuse large B-cell lymphoma. Am J Surg Pathol. 2010;34:327–40.

    Article  PubMed  Google Scholar 

  61. Aukema SM, Siebert R, Schuuring E, van Imhoff GW, Kluin-Nelemans H, Boerma EJ, et al. Double hit B-cell lymphomas. Blood. 2011;117:2319–31.

    Article  CAS  PubMed  Google Scholar 

  62. Campbell J, Seymour JF, Matthews J, Wolf M, Stone J, Juneja S. The prognostic impact of bone marrow involvement in patients with diffuse large cell lymphoma varies according to the degree of infiltration and presence of discordant marrow involvement. Eur J Haematol. 2006;76:473–80.

    Article  PubMed  Google Scholar 

  63. Chung R, Lai R, Wei P, Lee J, Hanson J, Belch AR, et al. Concordant but not discordant bone marrow involvement in diffuse large B-cell lymphoma predicts a poor clinical outcome independent of the International Prognostic Index. Blood. 2007;110:1278–82.

    Article  CAS  PubMed  Google Scholar 

  64. Talaulikar D, Dahlstrom JE, Shadbolt B, McNiven M, Broomfield A, Pidcock M. Occult bone marrow involvement in patients with diffuse large B-cell lymphoma: results of a pilot study. Pathology. 2007;39:580–5.

    Article  PubMed  Google Scholar 

  65. Talaulikar D, Dahlstrom JE. Staging bone marrow in diffuse large B-cell lymphoma: the role of ancillary investigations. Pathology. 2009;41:214–22.

    Article  CAS  PubMed  Google Scholar 

  66. Chigrinova E, Mian M, Scandurra M, Greiner TC, Chan WC, Vose JM, et al. Diffuse large B-cell lymphoma with concordant bone marrow involvement has peculiar genomic profile and poor clinical outcome. Hematol Oncol. 2011;29:38–41.

    Article  PubMed  Google Scholar 

  67. Barrans SL, Evans PA, O’Connor SJ, Kendall SJ, Owen RG, Haynes AP, et al. The t(14;18) is associated with germinal center-derived diffuse large B-cell lymphoma and is a strong predictor of outcome. Clin Cancer Res. 2003;9:2133–9.

    CAS  PubMed  Google Scholar 

  68. Baiyee D, Warnke R, Natkunam Y. Lack of utility of CD20 immunohistochemistry in staging bone marrow biopsies for diffuse large B-cell lymphoma. Appl Immunohistochem Mol Morphol. 2009;17:93–5.

    Article  PubMed  Google Scholar 

  69. Skinnider BF, Horsman DE, Dupuis B, Gascoyne RD. Bcl-6 and Bcl-2 protein expression in diffuse large B-cell lymphoma and follicular lymphoma: correlation with 3q27 and 18q21 chromosomal abnormalities. Hum Pathol. 1999;30:803–8.

    Article  CAS  PubMed  Google Scholar 

  70. Talaulikar D, Shadbolt B, Bell J, Khan K, Dahlstrom JE, McDonald A, et al. Clinical role of flow cytometry in redefining bone marrow involvement in diffuse large B-cell lymphoma (DLBCL) – a new perspective. Histopathology. 2008;52:340–7.

    Article  CAS  PubMed  Google Scholar 

  71. Bellan C, Stefano L, de Giulia F, Rogena EA, Lorenzo L. Burkitt lymphoma versus diffuse large B-cell lymphoma: a practical approach. Hematol Oncol. 2009;27:182–5.

    Article  PubMed  Google Scholar 

  72. Busch K, Borkhardt A, Wössmann W, Reiter A, Harbott J. Combined polymerase chain reaction methods to detect c-myc/IgH rearrangement in childhood Burkitt’s lymphoma for minimal residual disease analysis. Haematologica. 2004;89:818–25.

    CAS  PubMed  Google Scholar 

  73. Kristinsson SY, Koshiol J, Goldin LR, Björkholm M, Turesson I, Gridley G, et al. Genetics- and immune-related factors in the pathogenesis of lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma. 2009;9:23–6.

    Article  CAS  PubMed  Google Scholar 

  74. Vitolo U, Ferreri AJ, Montoto S. Lymphoplasmacytic lymphoma-Waldenstrom’s macroglobulinemia. Crit Rev Oncol Hematol. 2008;67:172–85.

    Article  PubMed  Google Scholar 

  75. Owen RG, Treon SP, Al-Katib A, Fronseca R, Greipp PR, McMaster ML, et al. Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglo­bulinemia. Semin Oncol. 2003;30:110–5.

    Article  PubMed  Google Scholar 

  76. Vijay A, Gertz MA. Waldenstrom macroglobulinemia. Blood. 2007;109:5096–103.

    Article  CAS  PubMed  Google Scholar 

  77. Treon SP, Hunter ZR, Aggrwal A, Ewen EP, Masota S, Lee C, et al. Characterization of familial Waldenstrom’s macroglobulinemia. Ann Oncol. 2006;17:488–94.

    Article  CAS  PubMed  Google Scholar 

  78. Mele A, Pulsoni A, Bianco E, Musto P, Szklo A, Sanpaolo MG, et al. Hepatitis C virus and B-cell non-Hodgkin lymphomas: an Italian multicenter case–control study. Blood. 2003;102:996–9.

    Article  CAS  PubMed  Google Scholar 

  79. Leleu X, O’Connor K, Ho AW, Santos DD, Manning R, Xu L, et al. Hepatitis C viral infection is not associated with Waldenstrom’s macroglobulinemia. Am J Hematol. 2007;82:83–4.

    Article  PubMed  Google Scholar 

  80. Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346:564–9.

    Article  PubMed  Google Scholar 

  81. Konoplev S, Medeiros LJ, Bueso-Ramos CE, Jorgensen JL, Lin P. Immunophenotypic profile of lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. Am J Clin Pathol. 2005;124:414–20.

    Article  PubMed  Google Scholar 

  82. Lin P, Medeiros LJ. Lymphoplasmacytic lymphoma/waldenstrom macroglobulinemia: an evolving concept. Adv Anat Pathol. 2005;12:246–55.

    Article  PubMed  Google Scholar 

  83. Chng WJ, Schop RF, Price-Troska T, Ghobial I, Kay N, Jelinek DF, et al. Gene-expression profiling of Waldenstrom macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma. Blood. 2006;108:2755–63.

    Article  CAS  PubMed  Google Scholar 

  84. Kriangkum J, Taylor BJ, Treon SP, Mant MJ, Reiman T, Belch AR, et al. Molecular characterization of Waldenstrom’s macroglobulinemia reveals frequent occurrence of two B-cell clones having distinct IgH VDJ sequences. Clin Cancer Res. 2007;13:2005–13.

    Article  CAS  PubMed  Google Scholar 

  85. Kyriakou C, Canals C, Sibon D, Cahn JY, Kaszmi M, Arcese W, et al. High-dose therapy and autologous stem-cell transplantation in Waldenstrom macroglobulinemia: the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol. 2010;28:2227–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Dogan M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Dogan, A., Hekimgil, M., Ozsan, N. (2012). A Step Forward in the Diagnosis of B-Cell Lymphomas in the Bone Marrow. In: Anagnostou, D., Matutes, E. (eds) Bone Marrow Lymphoid Infiltrates. Springer, London. https://doi.org/10.1007/978-1-4471-4174-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4174-7_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4173-0

  • Online ISBN: 978-1-4471-4174-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics