Skip to main content

Stem Cells in Fetal Tissue (The Kidney as a Model)

  • Chapter
  • First Online:
  • 864 Accesses

Abstract

During the process of development, a single cell, the fertilized ovum, becomes an entire functional organism that is made up of a vast number of cell types, each acting within the context of a specific organ or tissue, usually in cooperation with other types of cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Slack JM. Origin of stem cells in organogenesis. Science. 2008;322:1498–501.

    Article  PubMed  CAS  Google Scholar 

  2. Dressler GR. Advances in early kidney specification, development and patterning. Development. 2009;136:3863–74.

    Article  PubMed  CAS  Google Scholar 

  3. Bouchard M, Souabni A, Mandler M, et al. Nephric lineage specification by Pax2 and Pax8. Genes Dev. 2002;16:2958–70.

    Article  PubMed  CAS  Google Scholar 

  4. James RG, Schultheiss TM. Bmp signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev Biol. 2005;288:113–25.

    Article  PubMed  CAS  Google Scholar 

  5. Osafune K, Nishinakamura R, Komazaki S, et al. In vitro induction of the pronephric duct in Xenopus explants. Dev Growth Differ. 2002;44:161–7.

    Article  PubMed  Google Scholar 

  6. Mauch TJ, Yang G, Wright M, et al. Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm. Dev Biol. 2000;220:62–75.

    Article  PubMed  CAS  Google Scholar 

  7. van Wijk B, Moorman AF, van den Hoff MJ. Role of bone morphogenetic proteins in cardiac differentiation. Cardiovasc Res. 2007;74:244–55.

    Article  PubMed  Google Scholar 

  8. Raible DW. Development of the neural crest: achieving specificity in regulatory pathways. Curr Opin Cell Biol. 2006;18:698–703.

    Article  PubMed  CAS  Google Scholar 

  9. Cain JE, Hartwig S, Bertram JF, et al. Bone morphogenetic protein signaling in the developing kidney: present and future. Differentiation. 2008;76:831–42.

    Article  PubMed  CAS  Google Scholar 

  10. Wingert RA, Davidson AJ. The zebrafish pronephros: a model to study nephron segmentation. Kidney Int. 2008;73:1120–7.

    Article  PubMed  CAS  Google Scholar 

  11. Barak H, Rosenfelder L, Schultheiss TM, et al. Cell fate specification along the anterior-posterior axis of the intermediate mesoderm. Dev Dyn. 2005;232:901–14.

    Article  PubMed  CAS  Google Scholar 

  12. Preger-Ben Noon E, Barak H, Guttmann-Raviv N, et al. Interplay between activin and Hox genes determines the formation of the kidney morphogenetic field. Development. 2009;136:1995–2004.

    Article  PubMed  CAS  Google Scholar 

  13. Patterson LT, Pembaur M, Potter SS. Hoxa11 and Hoxd11 regulate branching morphogenesis of the ureteric bud in the developing kidney. Development. 2001;128:2153–61.

    PubMed  CAS  Google Scholar 

  14. Gong KQ, Yallowitz AR, Sun H, et al. A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol. 2007;27:7661–8.

    Article  PubMed  CAS  Google Scholar 

  15. Mugford JW, Sipila P, Kobayashi A, et al. Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo. Dev Biol. 2008;319:396–405.

    Article  PubMed  CAS  Google Scholar 

  16. Pleniceanu O, Harari-Steinberg O, Dekel B. Concise review: kidney stem/progenitor cells: differentiate, sort out, or reprogram? Stem Cells. 2010;28:1649–60.

    Article  PubMed  Google Scholar 

  17. Reidy KJ, Rosenblum ND. Cell and molecular biology of kidney development. Semin Nephrol. 2009;29:321–37.

    Article  PubMed  CAS  Google Scholar 

  18. Zhou Q, Melton DA. Extreme makeover: converting one cell into another. Cell Stem Cell. 2008;3:382–8.

    Article  PubMed  CAS  Google Scholar 

  19. Pepicelli CV, Kispert A, Rowitch DH, et al. GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev Biol. 1997;192:193–8.

    Article  PubMed  CAS  Google Scholar 

  20. Miyazaki Y, Oshima K, Fogo A, et al. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest. 2000;105:863–73.

    Article  PubMed  CAS  Google Scholar 

  21. Michos O, Goncalves A, Lopez-Rios J, et al. Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development. 2007;134:2397–405.

    Article  PubMed  CAS  Google Scholar 

  22. Michos O, Panman L, Vintersten K, et al. Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development. 2004;131:3401–10.

    Article  PubMed  CAS  Google Scholar 

  23. Kume T, Deng K, Hogan BL. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development. 2000;127:1387–95.

    PubMed  CAS  Google Scholar 

  24. Grieshammer U, Le M, Plump AS, et al. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell. 2004;6:709–17.

    Article  PubMed  CAS  Google Scholar 

  25. Dressler GR, Wilkinson JE, Rothenpieler UW, et al. Deregulation of Pax-2 expression in transgenic mice generates severe kidney abnormalities. Nature. 1993;362:65–7.

    Article  PubMed  CAS  Google Scholar 

  26. Xu PX, Adams J, Peters H, et al. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet. 1999;23:113–7.

    Article  PubMed  CAS  Google Scholar 

  27. Fox DT, Morris LX, Nystul T, Spradling AC. Lineage analysis of stem cells. 2009 Jan 31. StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute.

    Google Scholar 

  28. Mugford JW, Sipila P, McMahon JA, et al. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol. 2008;324:88–98.

    Article  PubMed  CAS  Google Scholar 

  29. Kobayashi A, Valerius MT, Mugford JW, et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008;3:169–81.

    Article  PubMed  CAS  Google Scholar 

  30. Nishinakamura R, Osafune K. Essential roles of Sall family genes in kidney development. J Physiol Sci. 2006;56:131–6.

    Article  PubMed  Google Scholar 

  31. Osafune K, Takasato M, Kispert A, et al. Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development. 2006;133:151–61.

    Article  PubMed  CAS  Google Scholar 

  32. Self M, Lagutin OV, Bowling B, et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 2006;25:5214–28.

    Article  PubMed  CAS  Google Scholar 

  33. Kispert A, Vainio S, McMahon AP. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development. 1998;125:4225–34.

    PubMed  CAS  Google Scholar 

  34. Gu B, Watanabe K, Dai X. Epithelial stem cells: an epigenetic and Wnt-centric perspective. J Cell Biochem. 2010;110:1279–87.

    Article  PubMed  CAS  Google Scholar 

  35. Nishinakamura R. Stem cells in the embryonic kidney. Kidney Int. 2008;73:913–7.

    Article  PubMed  CAS  Google Scholar 

  36. Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  PubMed  CAS  Google Scholar 

  37. Schmidt-Ott KM, Barasch J. WNT/beta-catenin signaling in nephron progenitors and their epithelial progeny. Kidney Int. 2008;74:1004–8.

    Article  PubMed  CAS  Google Scholar 

  38. Tanigawa S, Wang H, Yang Y, et al. Wnt4 induces nephronic tubules in metanephric mesenchyme by a non-canonical mechanism. Dev Biol. 2011;352(1):58–69. Epub 2011 Jan 21.

    Article  PubMed  CAS  Google Scholar 

  39. Dudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 1995;9:2795–807.

    Article  PubMed  CAS  Google Scholar 

  40. Barasch J, Yang J, Qiao J, et al. Tissue inhibitor of metalloproteinase-2 stimulates mesenchymal growth and regulates epithelial branching during morphogenesis of the rat metanephros. J Clin Invest. 1999;103:1299–307.

    Article  PubMed  CAS  Google Scholar 

  41. Barasch J, Yang J, Ware CB, et al. Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell. 1999;99:377–86.

    Article  PubMed  CAS  Google Scholar 

  42. Plisov SY, Yoshino K, Dove LF, et al. TGF beta 2, LIF and FGF2 cooperate to induce nephrogenesis. Development. 2001;128:1045–57.

    PubMed  CAS  Google Scholar 

  43. Herzlinger D, Koseki C, Mikawa T, et al. Metanephric mesenchyme contains multipotent stem cells whose fate is restricted after induction. Development. 1992;114:565–72.

    PubMed  CAS  Google Scholar 

  44. Georgas K, Rumballe B, Wilkinson L, et al. Use of dual section mRNA in situ hybridisation/immunohistochemistry to clarify gene expression patterns during the early stages of nephron development in the embryo and in the mature nephron of the adult mouse kidney. Histochem Cell Biol. 2008;130:927–42.

    Article  PubMed  CAS  Google Scholar 

  45. Gridley T. Notch signaling in vascular development and physiology. Development. 2007;134:2709–18.

    Article  PubMed  CAS  Google Scholar 

  46. Zhou ZD, Kumari U, Xiao ZC, et al. Notch as a molecular switch in neural stem cells. IUBMB Life. 2010;62:618–23.

    Article  PubMed  CAS  Google Scholar 

  47. Cheng HT, Kim M, Valerius MT, et al. Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development. 2007;134:801–11.

    Article  PubMed  CAS  Google Scholar 

  48. Fujimura S, Jiang Q, Kobayashi C, et al. Notch2 activation in the embryonic kidney depletes nephron progenitors. J Am Soc Nephrol. 2010;21:803–10.

    Article  PubMed  CAS  Google Scholar 

  49. Lindahl P, Hellstrom M, Kalen M, et al. Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development. 1998;125:3313–22.

    PubMed  CAS  Google Scholar 

  50. Fishman MP, Melton DA. Pancreatic lineage analysis using a retroviral vector in embryonic mice demonstrates a common progenitor for endocrine and exocrine cells. Int J Dev Biol. 2002;46:201–7.

    PubMed  CAS  Google Scholar 

  51. Vincent SD, Buckingham ME. How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol. 2010;90:1–41.

    Article  PubMed  Google Scholar 

  52. Heath JK. Transcriptional networks and signaling pathways that govern vertebrate intestinal development. Curr Top Dev Biol. 2010;90:159–92.

    Article  PubMed  CAS  Google Scholar 

  53. Hammerman MR. Transplantation of renal precursor cells: a new therapeutic approach. Pediatr Nephrol. 2000;14:513–7.

    Article  PubMed  CAS  Google Scholar 

  54. Dekel B, Amariglio N, Kaminski N, et al. Engraftment and differentiation of human metanephroi into functional mature nephrons after transplantation into mice is accompanied by a profile of gene expression similar to normal human kidney development. J Am Soc Nephrol. 2002;13:977–90.

    PubMed  CAS  Google Scholar 

  55. Kim SS, Park HJ, Han J, et al. Improvement of kidney failure with fetal kidney precursor cell transplantation. Transplantation. 2007;83:1249–58.

    Article  PubMed  Google Scholar 

  56. Kim SS, Gwak SJ, Han J, et al. Regeneration of kidney tissue using in vitro cultured fetal kidney cells. Exp Mol Med. 2008;40:361–9.

    Article  PubMed  CAS  Google Scholar 

  57. Challen GA, Martinez G, Davis MJ, et al. Identifying the molecular phenotype of renal progenitor cells. J Am Soc Nephrol. 2004;15:2344–57.

    Article  PubMed  CAS  Google Scholar 

  58. Dekel B, Metsuyanim S, Schmidt-Ott KM, et al. Multiple imprinted and stemness genes provide a link between normal and tumor progenitor cells of the developing human kidney. Cancer Res. 2006;66:6040–9.

    Article  PubMed  CAS  Google Scholar 

  59. Sebire NJ, Vujanic GM. Paediatric renal tumours: recent developments, new entities and pathological features. Histopathology. 2009;54:516–28.

    Article  PubMed  Google Scholar 

  60. Metsuyanim S, Pode-Shakked N, Schmidt-Ott KM, et al. Accumulation of malignant renal stem cells is associated with epigenetic changes in normal renal progenitor genes. Stem Cells. 2008;26:1808–17.

    Article  PubMed  CAS  Google Scholar 

  61. Pode-Shakked N, Metsuyanim S, Rom-Gross E, et al. Developmental tumorigenesis: NCAM as a putative marker for the malignant renal stem/progenitor cell population. J Cell Mol Med. 2009;13(8B):1792–808.

    Article  PubMed  Google Scholar 

  62. Metsuyanim S, Harari-Steinberg O, Buzhor E, et al. Expression of stem cell markers in the human fetal kidney. PLoS One. 2009;4:e6709.

    Article  PubMed  Google Scholar 

  63. Trzpis M, Bremer E, McLaughlin PM, et al. EpCAM in morphogenesis. Front Biosci. 2008;13:5050–5.

    Article  PubMed  CAS  Google Scholar 

  64. Humphreys BD, Bonventre JV. Mesenchymal stem cells in acute kidney injury. Annu Rev Med. 2008;59:311–25.

    Article  PubMed  CAS  Google Scholar 

  65. Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 2005;11:1198–211.

    Article  PubMed  CAS  Google Scholar 

  66. Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.

    Article  PubMed  CAS  Google Scholar 

  67. Caplan AI. All MSCs are pericytes? Cell Stem Cell. 2008;3:229–30.

    Article  PubMed  CAS  Google Scholar 

  68. da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008;26:2287–99.

    Article  PubMed  Google Scholar 

  69. Humphreys BD, Valerius MT, Kobayashi A, et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell. 2008;2:284–91.

    Article  PubMed  CAS  Google Scholar 

  70. Cicero SA, Johnson D, Reyntjens S, et al. Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proc Natl Acad Sci USA. 2009;106:6685–90.

    Article  PubMed  CAS  Google Scholar 

  71. Shmelkov SV, Butler JM, Hooper AT, et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest. 2008;118:2111–20.

    PubMed  CAS  Google Scholar 

  72. Weigmann A, Corbeil D, Hellwig A, et al. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA. 1997;94:12425–30.

    Article  PubMed  CAS  Google Scholar 

  73. van de Rijn M, Heimfeld S, Spangrude GJ, et al. Mouse hematopoietic stem-cell antigen Sca-1 is a member of the Ly-6 antigen family. Proc Natl Acad Sci USA. 1989;86:4634–8.

    Article  PubMed  Google Scholar 

  74. Droz D, Rousseau-Merck MF, Jaubert F, et al. Cell differentiation in Wilms’ tumor (nephroblastoma): an immunohistochemical study. Hum Pathol. 1990;21:536–44.

    Article  PubMed  CAS  Google Scholar 

  75. Natali PG, Nicotra MR, Sures I, et al. Expression of c-kit receptor in normal and transformed human nonlymphoid tissues. Cancer Res. 1992;52:6139–43.

    PubMed  CAS  Google Scholar 

  76. Alison MR, Islam S. Attributes of adult stem cells. J Pathol. 2009;217:144–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oren Pleniceanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Pleniceanu, O., Dekel, B. (2013). Stem Cells in Fetal Tissue (The Kidney as a Model). In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Tissue Transplantation. Springer, London. https://doi.org/10.1007/978-1-4471-4171-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4171-6_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4170-9

  • Online ISBN: 978-1-4471-4171-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics