Skip to main content

Fetal Cell Therapy and Tissue Engineering for Musculoskeletal Tissues

  • Chapter
  • First Online:
  • 866 Accesses

Abstract

Cultured primary fetal cells from one organ donation could possibly meet the exigent and stringent technical aspects for development of therapeutic products. These cell types have fewer technological limitations for cellular proliferation capacity (simple culture conditions) and maintenance of differentiated phenotype, and they also have low probability for transmission of communicable diseases since they can be manufactured using traditional cell banking platforms. Master and working cell banks (MCB, WCB) can be obtained from one fetal organ donation, permitting multiple tissues (skin, bone, cartilage, muscle, and intervertebral disc) to be processed in short periods of time with identical methods to assure a stringent tracing of the processes for the production of standardized therapeutic agents. In addition, specific cell delivery systems for each tissue type can be adapted to the clinical application. Since it is the intention that banked primary fetal cells enhance the prospective treatment of hundreds of thousands of patients with only one organ donation, it is imperative to show consistency, traceability, and safety of the processes including donor tissue selection, cell banking, cell testing, and growth of cells in outscaling for the preparation of bioengineered products for clinical application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Master Z, McLeod M, Mendez I. Benefits, risks and ethical considerations in translation of stem cell research to clinical applications in Parkinson’s disease. J Med Ethics. 2007;33:169–73.

    Article  PubMed  Google Scholar 

  2. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84.

    Article  PubMed  CAS  Google Scholar 

  3. Bhattacharya N. Fetal cell/tissue therapy in adult disease: a new horizon in regenerative medicine. Clin Exp Obstet Gynecol. 2004;31:167–73.

    PubMed  CAS  Google Scholar 

  4. Ricordi C, Edlund H. Toward a renewable source of pancreatic cells. Nat Biotech. 2008;26:397–8.

    Article  CAS  Google Scholar 

  5. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin secreting cells in vivo. Nat Biotech. 2008;26:443–5.

    Article  CAS  Google Scholar 

  6. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132:661–80.

    Article  PubMed  CAS  Google Scholar 

  7. Hohlfeld J, de Buys Roessingh A, Hirt-Burri N, Chaubert P, Gerber S, Scaletta C, Hohlfeld P, Applegate LA. Tissue-engineered fetal skin constructs for paediatric burns. Lancet. 2005;366:840–2.

    Article  PubMed  Google Scholar 

  8. de Buys Roessingh AS, Hohlfeld J, Scaletta C, Hirt-Burri N, Gerber S, Hohlfeld P, Gebbers J-O, Applegate LA. Development, characterization and use of a fetal skin cell bank for tissue engineering in wound healing. Cell Transplant. 2006;15:823–34.

    Article  PubMed  Google Scholar 

  9. Hirt-Burri N, Scaletta C, Gerber S, Pioletti DP, Applegate LA. Wound-healing gene family expression differences between fetal and foreskin cells used for bioengineered skin substitutes. Artif Organs. 2008;32:509–18.

    Article  PubMed  Google Scholar 

  10. Ramelet A-A, Hirt-Burri N, Raffoul W, Scaletta C, Pioletti DP, Offord E, Mansourian R, Applegate LA. 2008 Chronic wound healing by fetal cell therapy may be explained by differential gene profiling observed in fetal versus old skin cells. Exp Gerontol. 2009;44(3):208–18. Epub 2008 Nov 20.

    Article  PubMed  CAS  Google Scholar 

  11. Hirt-Burri N, de Buys Roessingh AS, Scaletta C, Gerber S, Pioletti DP, Applegate LA, Hohlfeld J. Human muscular fetal cells: a potential cell source for muscular therapies. Pediatr Surg Int. 2008;24:37–47.

    Article  PubMed  Google Scholar 

  12. Montjovent MO, Burri N, Mark S, Federici E, Scaletta C, Zambelli PY, Hohlfeld P, Leyvraz P-F, Applegate LA, Pioletti DP. Fetal bone cells for tissue engineering. Bone. 2004;35:1323–33.

    Article  PubMed  CAS  Google Scholar 

  13. Montjovent M-O, Mathieu L, Schmoekel H, Silke M, Bourban P-E, Zambelli P-Y, Laurent-Applegate LA, Pioletti DP. Repair of critical size defects in the rat cranium using ceramic-reinforced PLA scaffolds obtained by supercritical gas foaming. J Biomed Mater Res. 2007;83A:41–51.

    Article  CAS  Google Scholar 

  14. Montjovent M-O, Silke M, Mathieu L, Scaletta C, Scherberich A, Delabarde C, Zambelli P-Y, Bourban P-E, Applegate LA, Pioletti DP. Human fetal bone cells associated with ceramic reinforced PLA ­scaffolds for tissue engineering. Bone. 2008;42:554–64.

    Article  PubMed  CAS  Google Scholar 

  15. Montjovent MO, Bocelli-Tyndall C, Scaletta C, Scherberich A, Martin I, Laurent-Applegate L, Pioletti DP. In vitro characterization of immune-related properties of human fetal bone cells for potential tissue engineering applications. Tissue Eng Part A. 2009;15(7):1523–32.

    Article  PubMed  CAS  Google Scholar 

  16. Quintin A, Schizas C, Scaletta C, Jaccoud S, Chapuis-Bernasconi C, Gerber S, Juillerat L, Osterheld MC, Applegate LA, Pioletti DP. Human foetal spine as a source of cells for intervertebral disc regeneration. J Biol Mol Med. 2009;13:1–12.

    Google Scholar 

  17. Pioletti DP, Montjovent MO, Zambelli P-Y, Applegate LA. Bone tissue engineering using foetal cell therapy. Swiss Med Wkly. 2006;136:557–60.

    PubMed  Google Scholar 

  18. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med. 2006;10:7–19.

    Article  PubMed  CAS  Google Scholar 

  19. Bach AD, Arkudas A, Tjiawi J, Polykandriotis E, Kneser U, Horch RE, Beier JP. A new approach to tissue engineering of vascularized skeletal muscle. J Cell Mol Med. 2006;10:716–26.

    Article  PubMed  CAS  Google Scholar 

  20. Humphries C. Fetal-cell transplants reverse Parkinson’s in two patients focus online: News from Harvard Medical, Dental, and Public Health Schools. 2005. http://focus.hms.harvard.edu/2005/Jun10_2005/neurology.shtml, www.mclean.harvard.edu/pdf/news/mitn/harvardfocus.ole061005.pdf

  21. Deierborg T, Soulet D, Roybon L, Hall V, Brundin P. Emerging restorative treatments for Parkinson’s disease. Prog Neurobiol. 2008;85:407–32.

    Article  PubMed  CAS  Google Scholar 

  22. McKay R, Kittappa R. Will stem cell biology generate new therapies for Parkinson’s disease? Neuron. 2008;58:659–61.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang F, Pasumarthi KB. Embryonic stem cell transplantation: promise and progress in the treatment of heart disease. BioDrugs. 2008;22:361–74.

    Article  PubMed  CAS  Google Scholar 

  24. Bohl D, Liu S, Blanchard S, Hocquemiller M, Haase G, Heard JM. Directed evolution of motor neurons from genetically engineered neural precursors. Stem Cells. 2008;26:2564–75.

    Article  PubMed  CAS  Google Scholar 

  25. Oster H, Wilson DI, Hanley NA. Human embryo and early fetus research. Clin Gene. 2006;70:98–107.

    Article  Google Scholar 

  26. Zimmerman RK. Ethical analyses of vaccines grown in human cell strains derived from abortion: arguments and internet search. Vaccine. 2004;22:4238–44.

    Article  PubMed  Google Scholar 

  27. Quintin A, Hirt-Burri N, Scaletta C, Schizas C, Pioletti DP, Applegate LA. Consistency and safety of cell banks for research and clinical use: preliminary analysis of fetal skin banks. Cell Transplant. 2007;16(7):675–84.ur.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Ann Applegate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Hirt-Burri, N., Applegate, L.A. (2013). Fetal Cell Therapy and Tissue Engineering for Musculoskeletal Tissues. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Tissue Transplantation. Springer, London. https://doi.org/10.1007/978-1-4471-4171-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4171-6_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4170-9

  • Online ISBN: 978-1-4471-4171-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics