Skip to main content

Triangulation-Based Approaches to Three-Dimensional Scene Reconstruction

  • Chapter
Book cover 3D Computer Vision

Part of the book series: X.media.publishing ((XMEDIAPUBL))

Abstract

Triangulation-based approaches to three-dimensional scene reconstruction are primarily based on the concept of bundle adjustment, which allows the determination of the three-dimensional point coordinates in the world and the camera parameters based on the minimisation of the reprojection error in the image plane. A framework based on projective geometry has been developed in the field of computer vision, where the nonlinear optimisation problem of bundle adjustment can to some extent be replaced by linear algebra techniques. Both approaches are related to each other in this chapter. Furthermore, an introduction to the field of camera calibration is given, and an overview of the variety of existing methods for establishing point correspondences is provided, including classical and also new feature-based, correlation-based, dense, and spatiotemporal approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The OpenCV library is accessible at http://opencv.willowgarage.com.

References

  • Abdel-Aziz, Y. I., Karara, H. M., 1971. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. Proc. of Symp. on Close-Range Photogrammetry, American Society of Photogrammetry, Falls Church, pp. 1–18.

    Google Scholar 

  • Amberg, B., Blake, A., Fitzgibbon, A., Romdhani, S., Vetter, T., 2007. Reconstructing high quality face-surfaces using model based stereo. Proc. Int. Conf. on Computer Vision, pp. 1–8.

    Google Scholar 

  • Aschwanden, P. F., 1993. Experimenteller Vergleich von Korrelationskriterien in der Bildanalyse. Hartung-Gorre-Verlag, Konstanz.

    Google Scholar 

  • Baker, H. H., Binford, T. O., 1981. Depth from edge and intensity based stereo. Proc. Int. Joint Conf. on Artificial Intelligence, Vancouver, Canada, pp. 631–636.

    Google Scholar 

  • Barrois, B., Konrad, M., Wöhler, C., Groß, H.-M., 2010. Resolving stereo matching errors due to repetitive structures using model information. Pattern Recognit. Lett. 31, pp. 1683–1692.

    Article  Google Scholar 

  • Barrois, B., Wöhler, C., 2008. Spatio-temporal 3D pose estimation of objects in stereo images. In: Gasteratos, A., Vincze, M., Tsotsos, J. (eds.), Proc. Int. Conf. on Computer Vision Systems, Santorini, Greece. Lecture Notes in Computer Science 5008, pp. 507–516, Springer, Berlin.

    Chapter  Google Scholar 

  • Besl, P. J., McKay, N. D., 1992. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), pp. 239–256.

    Article  Google Scholar 

  • Biber, P., Andreasson, H., Duckett, T., Schilling, A., 2004. 3D modeling of indoor environments by a mobile robot with a laser scanner and panoramic camera. Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 4, pp. 3430–3435.

    Google Scholar 

  • Birchfield, S., 1998. An Introduction to Projective Geometry (for Computer Vision). http://www.ces.clemson.edu/stb/projective/ (accessed October 16, 2007).

  • Bouguet, J.-Y., 1999. Visual Methods for Three-Dimensional Modeling. PhD thesis, California Institute of Technology, Pasadena.

    Google Scholar 

  • Bouguet, J.-Y., 2007. Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/ (accessed September 04, 2007).

  • Bronstein, I. N., Semendjajew, K. A., 1989. Taschenbuch der Mathematik. Verlag Harri Deutsch, Frankfurt a. M.

    MATH  Google Scholar 

  • Brown, D. C., 1966. Decentering distortion of lenses. Photom. Eng. 32(3), pp. 444–462.

    Google Scholar 

  • Brown, D. C., 1971. Close-range camera calibration. Photom. Eng. 37(8), pp. 855–866.

    Google Scholar 

  • Chen, D., Zhang, G., 2005. A new sub-pixel detector for x-corners in camera calibration targets. Proc. 13th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision.

    Google Scholar 

  • Cipolla, R., Drummond, T., Robertson, D., 1999. Camera calibration from vanishing points in images of architectural scenes. Proc. 10th British Machine Vision Conference, Nottingham, UK, pp. 382–391.

    Google Scholar 

  • Clarke, T. A., Fryer, J. F., 1998. The development of camera calibration methods and models. Photogramm. Rec. 16(91), pp. 51–66.

    Article  Google Scholar 

  • Cox, I., Hingorani, S., Rao, S., 1996. A maximum likelihood stereo algorithm. Comput. Vis. Image Underst. 63(3), pp. 542–567.

    Article  Google Scholar 

  • Craig, J. J., 1989. Introduction to Robotics, Mechanics and Control. Addison-Wesley, Reading.

    MATH  Google Scholar 

  • Davis, T., 2001. Projective Geometry. http://www.geometer.org/mathcircles/projective.pdf (accessed February 09, 2012).

  • Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S., 2005. Spacetime stereo: a unifying framework for depth from triangulation. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), pp. 296–302.

    Article  Google Scholar 

  • Di Stefano, L., Marchionni, M., Mattoccia, S., 2004. A PC-based real-time stereo vision system. Int. J. Mach. Graph. Vision 13(3), 197–220.

    Google Scholar 

  • Durucan, E., 2001. Low Computational Cost Illumination Invariant Change Detection for Video Surveillance by Linear Independence. Thèse no. 2454, Ecole Polytechnique Fédérale de Lausanne.

    Google Scholar 

  • Faugeras, O., Hotz, B., Mathieu, H., Viéville, T., Zhang, Z., Fua, P., Théron, E., Moll, L., Berry, G., Vuillemin, J., Bertin, P., Proy, C., 1993. Real Time Correlation-Based Stereo: Algorithm, Implementations and Applications. INRIA Technical report no. 2013. http://perception.inrialpes.fr/Publications/1993/FHMVZFTMBVBP93/RR-2013.pdf (accessed February 10, 2012).

  • Fielding, G., Kam, M., 1997. Applying the Hungarian method to stereo matching. Proc. IEEE Conf. on Decision and Control, pp. 549–558.

    Google Scholar 

  • Fischler, M. A., Bolles, R. C., 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), pp. 381–395.

    Article  MathSciNet  Google Scholar 

  • Franke, U., Gavrila, D., Görzig, S., Lindner, F., Paetzold, F., Wöhler, C., 1999. Autonomous driving approaches downtown. IEEE Intell. Syst. 13(6), pp. 40–48.

    Article  Google Scholar 

  • Franke, U., Joos, A., 2000. Real-time stereo vision for urban traffic scene understanding. Proc. IEEE Conf. on Intelligent Vehicles, Detroit, pp. 273–278.

    Google Scholar 

  • Franke, U., Kutzbach, I., 1996. Fast stereo based object detection for stop&go traffic. IEEE Int. Conf. on Intelligent Vehicles, Tokyo, pp. 339–344.

    Google Scholar 

  • Franke, U., Rabe, C., Badino, H., Gehrig, S. K., 2005. 6D-vision: fusion of stereo and motion for robust environment perception. In: Kropatsch, W., Sablatnig, R., Hanbury, A. (eds.). Pattern Recognition, Proc. 27th DAGM Symposium, Vienna, Austria. Lecture Notes in Computer Science 3663, pp. 216–223, Springer, Berlin.

    Google Scholar 

  • Fua, P., 1993. A parallel stereo algorithm that produces dense depth maps and preserves image features. Mach. Vis. Appl. 6, 35–49.

    Article  Google Scholar 

  • Fusiello, A., Trucco, E., Verri, A., 2000. A compact algorithm for rectification of stereo pairs. Mach. Vis. Appl. 12, pp. 16–22.

    Article  Google Scholar 

  • Gövert, T., 2006. Konzeption und Implementierung eines Systems zur raumzeitlichen konturbasierten 3D-Stereoanalyse im Produktionsszenario. Diplom Thesis, Technical Faculty, Bielefeld University, Germany.

    Google Scholar 

  • Grammatikopoulos, L., Karras, G., Petsa, E., 2004. Camera calibration combining images with two vanishing points. Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXV-5, pp. 99–104.

    Google Scholar 

  • Grammatikopoulos, L., Karras, G., Petsa, E., Kalisperakis, I., 2006. A unified approach for automatic camera calibration from vanishing points. Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVI-5.

    Google Scholar 

  • Hahn, M., Barrois, B., Krüger, L., Wöhler, C., Sagerer, G., Kummert, F., 2010a. 3D pose estimation and motion analysis of the articulated human hand-forearm limb in an industrial production environment. 3D Research 03, 03.

    Google Scholar 

  • Hahn, M., Krüger, L., Wöhler, C., Groß, H.-M., 2007. Tracking of human body parts using the multiocular contracting curve density algorithm. Proc. Int. Conf. on 3-D Digital Imaging and Modeling, Montréal, Canada.

    Google Scholar 

  • Harris, C., Stephens, M., 1988. A combined corner and edge detector. Proc. 4th Alvey Vision Conf., pp. 189–192.

    Google Scholar 

  • Hartley, R., 1997. Kruppa’s equations derived from the fundamental matrix. IEEE Trans. Pattern Anal. Mach. Intell. 21, pp. 133–135.

    Article  Google Scholar 

  • Hartley, R., Zisserman, A., 2003. Multiple View Geometry in Computer Vision (2nd Edition). Cambridge University Press, Cambridge.

    Google Scholar 

  • Heap, T., Hogg, D., 1996. Toward 3D hand tracking using a deformable model. Proc. IEEE Int. Conf. on Automatic Face and Gesture Recognition, pp. 140–145.

    Google Scholar 

  • Heikkilä, J., Silvén, O., 1997. A four-step camera calibration procedure with implicit image correction. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1106–1112.

    Google Scholar 

  • Heisele, B., 1998. Objektdetektion in Straßenverkehrsszenen durch Auswertung von Farbbildfolgen. Doctoral Dissertation, Faculty of Electrical Engineering, Stuttgart University. Fortschritt-Berichte VDI, Reihe 10, no. 567.

    Google Scholar 

  • Hirschmüller, H., 2001. Improvements in real-time correlation-based stereo vision. Proc. IEEE Workshop on Stereo and Multi-Baseline Vision, Kauai, pp. 141–148.

    Chapter  Google Scholar 

  • Hirschmüller, H., Innocent, P. R., Garibaldi, J., 2002. Real-time correlation-based stereo vision with reduced border errors. Int. J. Comput. Vis. 47(1/2/3), pp. 229–246.

    Article  MATH  Google Scholar 

  • Hirschmüller, H., 2005. Accurate and efficient stereo processing by semi-global matching and mutual information. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 807–814.

    Google Scholar 

  • Hirschmüller, H., 2006. Stereo vision in structured environments by consistent semi-global matching. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2, pp. 2386–2393.

    Google Scholar 

  • Hirschmüller, H., 2008. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), pp. 328–341.

    Article  Google Scholar 

  • Horn, B. K. P., 1986. Robot Vision. MIT Press, Cambridge.

    Google Scholar 

  • Horn, B. K. P., 2000. Tsai’s Camera Calibration Method Revisited. MIT Technical Report. http://people.csail.mit.edu/bkph/articles/Tsai_Revisited.pdf (accessed September 04, 2007).

  • Huguet, F., Devernay, F., 2007. A variational method for scene flow estimation from stereo sequences. Proc. Int. Conf. on Computer Vision, pp. 1–7.

    Google Scholar 

  • Jähne, B., 2005. Digitale Bildverarbeitung. Springer, Berlin.

    Google Scholar 

  • Kung, I.-K., Lacroix, S., 2001. A robust interest points matching algorithm. Proc. Int. Conf. on Computer Vision, Vancouver, Canada, pp. 538–543.

    Google Scholar 

  • Krüger, L., 2007. Model Based Object Classification and Localisation in Multiocular Images. Doctoral Dissertation, Technical Faculty, Bielefeld University, Germany.

    Google Scholar 

  • Krüger, L., Wöhler, C., Würz-Wessel, A., Stein, F., 2004. In-factory calibration of multiocular camera systems. Proc. SPIE Photonics Europe (Optical Metrology in Production Engineering), Strasbourg, pp. 126–137.

    Google Scholar 

  • Krüger, L., Wöhler, C., 2011. Accurate chequerboard corner localisation for camera calibration. Pattern Recognit. Lett. 32, pp. 1428–1435.

    Article  Google Scholar 

  • Kruppa, E., 1913. Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung. Sitzungsberichte der Mathematisch Naturwissenschaftlichen Kaiserlichen Akademie der Wissenschaften 122, pp. 1939–1948.

    MATH  Google Scholar 

  • Kuhl, A., Wöhler, C., Krüger, L., Groß, H.-M., 2006. Monocular 3D scene reconstruction at absolute scales by combination of geometric and real-aperture methods. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.), Pattern Recognition, Proc. 28th DAGM Symposium, Heidelberg, Germany. Lecture Notes in Computer Science 4174, pp. 607–616, Springer, Berlin.

    Google Scholar 

  • Kuhn, H. W., 1955. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, pp. 83–97.

    Article  Google Scholar 

  • Kwon, Y.-H., 1998. DLT Method. http://www.kwon3d.com/theory/dlt/dlt.html (accessed October 16, 2007).

  • Lee, J., Kunii, T., 1993. Constraint-based hand animation. Models and Techniques in Computer Animation, Springer, Tokyo, pp. 110–127.

    Google Scholar 

  • Li, M., Lavest, J.-M., 1995. Some Aspects of Zoom-Lens Camera Calibration. Technical Report ISRN KTH/NA/P-95/03-SE, Royal Institute of Technology (KTH), Stockholm, Sweden.

    Google Scholar 

  • Lourakis, M., Argyros, A., 2004. The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm. Technical Report 340, Institute of Computer Science—FORTH, Heraklion, Crete, Greece.

    Google Scholar 

  • Lu, Y., Zhang, J. Z., Wu, Q. M. J., Li, Z. N., 2004. A survey of motion-parallax-based 3-D reconstruction algorithms. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 34(4), pp. 532–548.

    Article  Google Scholar 

  • Lucas, B. D., Kanade, T., 1981. An iterative image registration technique with an application to stereo vision. Proc. Int. Joint Conf. on Artificial Intelligence, Vancouver, pp. 674–679.

    Google Scholar 

  • Lucchese, L., Mitra, S., 2002. Using saddle points for subpixel feature detection in camera calibration targets. Proc. Asia-Pacific Conference on Circuits and Systems, pp. 191–195.

    Google Scholar 

  • Luhmann, T., 2006. Nahbereichsphotogrammetrie. Grundlagen, Methoden und Anwendungen. 2nd Edition, Wichmann, Heidelberg.

    Google Scholar 

  • Mallon, J., Whelan, P. F., 2006. Which pattern? Biasing aspects of planar calibration patterns and detection methods. Pattern Recognit. Lett. 28(8), pp. 921–930.

    Article  Google Scholar 

  • Mandler, E., Oberländer, M., 1990. One pass encoding of connected components in multi-valued images. Proc. IEEE Int. Conf. on Pattern Recognition, Atlantic City, pp. 64–69.

    Chapter  Google Scholar 

  • Marr, D., Poggio, T., 1979. A computational theory of human stereo vision. Proc. R. Soc. Lond. B, Biol. Sci., 204(1156), pp. 301–328.

    Article  Google Scholar 

  • Mason, S., 1994. Expert System Based Design of Photogrammetric Networks. Doctoral Dissertation, ETH Zürich.

    Google Scholar 

  • Medioni, G., Nevatia, R., 1985. Segment-based stereo matching. Comput. Vis. Graph. Image Process. 31, pp. 2–18.

    Article  Google Scholar 

  • Murray, D., Little, J. J., 2004. Segmenting correlation stereo range images using surface elements. Proc. 2nd Int. Symp. on 3D Data Processing, Visualization, and Transmission, pp. 656–663.

    Chapter  Google Scholar 

  • Nevatia, R., Babu, K. R., 1980. Linear feature extraction and description. Comput. Graph. Image Process. 13, pp. 257–269.

    Article  Google Scholar 

  • Olague, G., Hernández, B., 2005. A new accurate and flexible model based multi-corner detector for measurement and recognition. Pattern Recognit. Lett. 26(1), pp. 27–41.

    Article  Google Scholar 

  • Pedrotti, F. L., 1993. Introduction to Optics. 2nd Edition, Prentice Hall, New York.

    Google Scholar 

  • Pons, J.-P., Keriven, R., Faugeras, O., 2005. Modelling dynamic scenes by registering multi-view image sequences. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2, pp. 822–827.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., 2007. Numerical Recipes. The Art of Scientific Computing. 3rd Edition, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Rey, W. J. J., 1983. Introduction to Robust and Quasi-robust Statistical Methods. Springer, Berlin.

    Book  MATH  Google Scholar 

  • Roy, S., Cox, L., 1998. A maximum-flow formulation of the N-camera stereo correspondence problem. Proc. Int. Conf. on Computer Vision, Bombay, pp. 492–499.

    Google Scholar 

  • Salvi, J., Armangu, X., Batlle, J., 2002. A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recognit. Lett. 35(7), pp. 1617–1635.

    MATH  Google Scholar 

  • Scharstein, D., Szeliski, R., 2001. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1/2/3), pp. 7–42.

    Google Scholar 

  • Schmidt, J., Wöhler, C., Krüger, L., Gövert, T., Hermes, C., 2007. 3D scene segmentation and object tracking in multiocular image sequences. Proc. Int. Conf. on Computer Vision Systems, Bielefeld, Germany.

    Google Scholar 

  • Schreer, O., 2005. Stereoanalyse und Bildsynthese. Springer, Berlin.

    Google Scholar 

  • Sepehri, A., Yacoob, Y., Davis, L. S., 2004. Estimating 3d hand position and orientation using stereo. Proc. 4th Indian Conf. on Computer Vision, Graphics and Image Processing, pp. 58–63.

    Google Scholar 

  • Smith, S. M., Brady, J. M., 1997. SUSAN—a new approach to low level image processing. Int. J. Comput. Vis. 23(1), pp. 45–78.

    Article  Google Scholar 

  • Stein, F., 2004. Efficient computation of optical flow using the census transform. In: Rasmussen, C. E., Bülthoff, H. H., Giese, M. A., Schölkopf, B. (eds.), Pattern Recognition, Proc. 26th DAGM Symposium, Tübingen, Germany. Lecture Notes in Computer Science 3175, pp. 79–86, Springer, Berlin.

    Google Scholar 

  • Tonko, M., Nagel, H. H., 2000. Model-based stereo-tracking of non-polyhedral objects for automatic disassembly experiments. Int. J. Comput. Vis. 37(1), pp. 99–118.

    Article  MATH  Google Scholar 

  • Triggs, W., McLauchlan, P. F., Hartley, R. I., Fitzgibbon, A. W., 2000. Bundle adjustment—a modern synthesis. Proc. Int. Workshop on Vision Algorithms, pp. 298–372, Springer, London.

    Chapter  Google Scholar 

  • Tsai, R. Y., 1987. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 3(4), pp. 323–344.

    Article  Google Scholar 

  • Van der Mark, W., Gavrila, D. M., 2006. Real-time dense stereo for intelligent vehicles. IEEE Trans. Intell. Transp. Syst. 7(1), pp. 38–50.

    Article  Google Scholar 

  • Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T., 2005. Three-dimensional scene flow. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), pp. 475–480.

    Article  Google Scholar 

  • Vincent, E., Laganière, R., 2001. Matching feature points in stereo pairs: a comparative study of some matching strategies. Comput. Vis. Image Underst. 66(3), pp. 271–285.

    Google Scholar 

  • Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., Cremers, D., 2008a. Efficient dense scene flow from sparse or dense stereo data. Proc. Europ. Conf. on Computer Vision, pp. 739–751.

    Google Scholar 

  • Wedel, A., Vaudrey, T., Meissner, A., Rabe, C., Brox, T., Franke, U., Cremers, D., 2008b. An evaluation approach for scene flow with decoupled motion and position. In: Revised Papers Int. Dagstuhl Seminar on Statistical and Geometrical Approaches to Visual Motion Analysis, pp. 46–69, Springer, Berlin.

    Google Scholar 

  • Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., Cremers, D., 2011. Stereoscopic scene flow computation for 3D motion understanding. Int. J. Comput. Vis. 95, pp. 29–51.

    Article  MATH  Google Scholar 

  • Wöhler, C., d’Angelo, P., Krüger, L., Kuhl, A., Groß, H.-M., 2009. Monocular 3D scene reconstruction at absolute scale. ISPRS J. Photogramm. Remote Sens. 64, pp. 529–540.

    Article  Google Scholar 

  • Wöhler, C., Krüger, L., 2003. A contour based stereo vision algorithm for video surveillance applications. SPIE Visual Communication and Image Processing Lugano 5150(3), pp. 102–109.

    Google Scholar 

  • Zabih, R., Woodfill, J., 1994. Non-parametric transforms for computing visual correspondence. Proc. Europ. Conf. on Computer Vision, pp. 151–158.

    Google Scholar 

  • Zhang, Z., 1998. A Flexible New Technique for Camera Calibration. Microsoft Research Technical Report MSR-TR-98-71.

    Google Scholar 

  • Zhang, Z., 1999a. Flexible camera calibration by viewing a plane from unknown orientations. Proc. Int. Conf. on Computer Vision, pp. 666–673.

    Google Scholar 

  • Zhang, L., Curless, B., Seitz, S., 2003. Spacetime stereo: shape recovery for dynamic scenes. Proc. Computer Vision and Pattern Recognition, 2, pp. 367–374.

    Google Scholar 

  • Zhang, J. Q., Gimel’farb, G. L., 1999. On Detecting Points-of-Interest for Relative Orientation of Stereo Images. Technical Report CITR-TR-51, Computer Science Department of The University of Auckland. http://citr.auckland.ac.nz/techreports/1999/CITR-TR-51.pdf (accessed February 06, 2012)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Wöhler, C. (2013). Triangulation-Based Approaches to Three-Dimensional Scene Reconstruction. In: 3D Computer Vision. X.media.publishing. Springer, London. https://doi.org/10.1007/978-1-4471-4150-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4150-1_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4149-5

  • Online ISBN: 978-1-4471-4150-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics