Skip to main content

Microscopic Constitutive Models of Single Crystal and Polycrystal

  • Chapter
  • First Online:
Book cover Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 2533 Accesses

Abstract

A basic characteristic of crystal is that it consists of atoms or atom clusters arranged in a pattern that is periodic in 3D. The same atoms or atom clusters repeat at intervals in any orientation, and the intervals are called period. It should be noted that the period is different in different orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jinsheng P, Jianmin T, Minbo T (1988) The basement of material science. Tsinghua University press, China

    Google Scholar 

  2. Hosford WF, Caddell RM (1993) Metal forming mechanics and metallurgy. Prentice Hall, [M] Englewood Cliffs

    Google Scholar 

  3. Akhtar S (1995) Continuum theory of plasticity. Wiley, New York

    MATH  Google Scholar 

  4. Lubarda VA (2001) Elastoplasticity theory. CRC Press, Boca Raton

    Book  Google Scholar 

  5. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152–1211

    Article  Google Scholar 

  6. Levkovitch V, Svendsen B (2006) On the large-deformation- and continuum-based formulation of models for extended crystal plasticity. Int J Solids Struct 43(24):7246–7267

    Article  MathSciNet  MATH  Google Scholar 

  7. Zaera R, Fernandez-Saez J (2006) An implicit consistent algorithm for the integration of thermoviscoplastic constitutive equations in adiabatic conditions and finite deformations. Int J Solids Struct 43(6):1594–1612

    Article  MATH  Google Scholar 

  8. Ganapathysubramanian S, Zabaras N (2002) A continuum sensitivity method for finite thermo-inelastic deformations with applications to the design of hot forming processes. Int J Numer Methods Eng 55(12):1391–1437

    Article  MATH  Google Scholar 

  9. Mahler L, Ekh M, Runesson K (2001) A class of thermo-hyperelastic–viscoplastic models for porous materials: theory and numerics. Int J Plast 17(7):943–969

    Article  Google Scholar 

  10. Ziqiang W, Zhuping D (1995) Plastic micromechanics. Science press, Peking (In Chinese)

    Google Scholar 

  11. Steinmann P, Stein E (1996) On the numerical treatment and analysis of finite deformation ductile single crystal plasticity. Comput Methods Appl Mech Eng 129(3):235–254

    Article  MATH  Google Scholar 

  12. Maniatty AM, Dawson PR, Lee YS (1992) A time integration algorithm for elasto-viscoplastic cubic crystals applied to modelling polycrystalline deformation. Int J Numer Methods Eng 35(8):1565–1588

    Article  MATH  Google Scholar 

  13. Sarma G, Zacharia T (1999) Integration algorithm for modeling the elasto-viscoplastic response of polycrystalline materials. J Mech Phys Solids 47(6):1219–1238

    Article  MATH  Google Scholar 

  14. Hutchinson JW (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. Proc R Soc London A Math Phys Sci 348(1652):101

    Article  MATH  Google Scholar 

  15. Pan J, Rice JR (1983) Rate sensitivity of plastic flow and implications for yield-surface vertices. Int J Solids Struct 19(11):973–987

    Article  MATH  Google Scholar 

  16. Peirce D, Asaro RJ, Needleman A (1983) Material rate dependence and localized deformation in crystalline solids. Acta Metallurgica 31(12):1951–1976

    Article  Google Scholar 

  17. Mathur KK, Dawson PR (1989) On modeling the development of crystallographic texture in bulk forming processes. Int J Plast 5(1):67–94

    Article  Google Scholar 

  18. Kalidindi SR, Bronkhorst CA, Anand L (1992) Crystallographic texture evolution in bulk deformation processing of FCC metals. J Mech Phys Solids 40(3):537–569

    Article  Google Scholar 

  19. Sarma GB, Radhakrishnan B (2004) Modeling microstructural effects on the evolution of cube texture during hot deformation of aluminum* 1. Mater Sci Eng A 385(1–2):91–104

    Google Scholar 

  20. Balasubramanian S, Anand L (2002) Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homologous temperatures. J Mech Phys Solids 50(1):101–126

    Article  MATH  Google Scholar 

  21. Lubarda VA (2001) Elastoplasticity theory. CRC Press, Boca Raton

    Book  Google Scholar 

  22. Taylor GI (1938) Plasticity strain in metals. J Inst Metals 62:307

    Google Scholar 

  23. Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z Phys A Hadrons Nucl 151(4):504–518

    Google Scholar 

  24. Kröner E (1961) Zur plastischen versetzung und eigenspannung. Acta Metall 9:155

    Article  Google Scholar 

  25. Budiansky B, Wu TT (1962) Theoretical prediction of plastic strains of polycrystals. In: Proceedings of fourth US national congress of applied mechanics, ASME, pp 1175–1185

    Google Scholar 

  26. Lubarda VA (2001) Elastoplasticity theory. CRC Press, Boca Raton

    Book  Google Scholar 

  27. Havner KS (1992) Finite plastic deformation of crystalline solids. [M] Cambridge university press, Cambridge

    Book  MATH  Google Scholar 

  28. Bishop JFW, Hill R (1951) A theoretical derivation of the plastic properties of polycrystalline face centered metals. Phil Mag 42:414–1289

    MathSciNet  MATH  Google Scholar 

  29. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc Roy Soc London 241A:376–396

    MathSciNet  Google Scholar 

  30. Mura T (1987) Micromechanics of defects in solids, 2 Revised edn. Martinus Nijhoff Publishers, Boston

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Hu, P., Ma, N., Liu, Lz., Zhu, YG. (2013). Microscopic Constitutive Models of Single Crystal and Polycrystal . In: Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-4471-4099-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4099-3_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4098-6

  • Online ISBN: 978-1-4471-4099-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics