Skip to main content

A New Interaction Strategy for Musical Timbre Design

  • Chapter
  • First Online:

Part of the book series: Springer Series on Cultural Computing ((SSCC))

Abstract

Sound creation and editing in hardware and software synthesizers presents usability problems and a challenge for HCI research. Synthesis parameters vary considerably in their degree of usability, and musical timbre itself is a complex and multidimensional attribute of sound. This chapter presents a user-driven search-based interaction style where the user engages directly with sound rather than with a mediating interface layer. Where the parameters of a given sound synthesis method do not readily map to perceptible sonic attributes, the search algorithm offers an alternative means of timbre specification and control. However, it is argued here that the method has wider relevance for interaction design in search domains which are generally well-ordered and understood, but whose parameters do not afford a useful or intuitive means of search.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ashley, R. (1986). A knowledge-based approach to assistance in timbral design. In Proceedings of the 1986 international computer music conference, The Hague, Netherlands.

    Google Scholar 

  • Beauchamp, J. (1969). A computer system for time-variant harmonic analysis and synthesis of musical tones. In H. von Foerster & J. W. Beauchamp (Eds.), Music by computers. New York: Wiley.

    Google Scholar 

  • Blumenthal, J., Grossmann, R., Golatowski, F., & Timmermann, D. (2007). Weighted centroid localization in Zigbee-based sensor networks. WISP 2007. In IEEE international symposium on intelligent signal processing, Madrid, Spain.

    Google Scholar 

  • Butler, D. (1992). The musician’s guide to perception and cognition. New York: Schirmer Books.

    Google Scholar 

  • Caclin, A., McAdams, S., Smith, B. K., & Winsberg, S. (2005). Acoustic correlates of timbre space dimensions: A confirmatory study using synthetic tones. Journal of the Acoustical Society of America, 118(1), 471–482.

    Article  Google Scholar 

  • Dahlstedt, P. (2001). Creating and exploring huge parameter spaces: Interactive evolution as a tool for sound generation proceedings of the 2001 international computer music conference. Havana: ICMA.

    Google Scholar 

  • Ehresman, D., & Wessel, D. L. (1978). Perception of timbral analogies. Paris: IRCAM.

    Google Scholar 

  • Ethington, R., & Punch, B. (1994). SeaWave: A system for musical timbre description. Computer Music Journal, 18(1), 30–39.

    Article  Google Scholar 

  • Faure, A., McAdams, S., & Nosulenko, V. (1996). Verbal correlates of perceptual dimensions of timbre. In Proceedings of the 4th International Conference on Music Perception and Cognition (ICMPC4), McGill University, Montreal, Canada.

    Google Scholar 

  • Giannakis, K. (2006). A comparative evaluation of auditory-visual mappings for sound visualisation. Organised Sound, 11(3), 297–307.

    Article  Google Scholar 

  • Grey, J. M., & Gordon, J. W. (1978). Perceptual effects of spectral modifications on musical timbres. Journal of the Acoustical Society of America, 63(5), 1493–1500.

    Article  Google Scholar 

  • Hajda, J. M., Kendall, R. A., Carterette, E. C., & Harshberger, M. L. (1997). Methodological issues in timbre research. In I. Deliège & J. Sloboda (Eds.), The perception and cognition of music. London: Psychology Press.

    Google Scholar 

  • Hourdin, C., Charbonneau, G., & Moussa, T. (1997a). A multidimensional scaling analysis of musical instruments’ time varying spectra. Computer Music Journal, 21(2), 40–55.

    Article  Google Scholar 

  • Hourdin, C., Charbonneau, G., & Moussa, T. (1997b). A sound synthesis technique based on multidimensional scaling of spectra. Computer Music Journal, 21(2), 40–55.

    Article  Google Scholar 

  • Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1986). Direct manipulation interfaces. In D. A. Norman & S. W. Draper (Eds.), User centered system design: new perspectives on human-computer interaction. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Johnson, C.G. (1999). Exploring the sound-space of synthesis algorithms using interactive genetic algorithms. In AISB’99 symposium on musical creativity, Edinburgh.

    Google Scholar 

  • Kendall, R. A., & Carterette, E. C. (1991). Perceptual scaling of simultaneous wind instrument timbres. Music Perception, 8(4), 369–404.

    Article  Google Scholar 

  • Kendall, R., & Carterette, E. C. (1993). Identification and blend of timbres as basis for orchestration. Contemporary Music Review, 9, 51–67.

    Article  Google Scholar 

  • Krumhansl, C. L. (1989). Why is musical timbre so hard to understand? In S. Nielzen & O. Olsson (Eds.), Structure and perception of electroacoustic sound and music. Amsterdam: Elsevier (Excerpta Medica 846).

    Google Scholar 

  • Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  • Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling. Newbury Park: Sage Publications.

    Google Scholar 

  • Mandelis, J. (2001). Genophone: An evolutionary approach to sound synthesis and performance. In E. Bilotta, E. R. Miranda, P. Pantano, & P. Todd (Eds.), Proceedings of ALMMA 2002: Workshop on artificial life models for musical applications. Cosenza: Editoriale Bios.

    Google Scholar 

  • Mandelis, J., & Husbands, P. (2006). Genophone: Evolving sounds and integral performance parameter mappings. International Journal on Artificial Intelligence Tools, 20(10), 1–23.

    Google Scholar 

  • Martins, J.M., Pereira, F.C., Miranda, E.R., & Cardoso, A. (2004) Enhancing sound design with conceptual blending of sound descriptors. In Proceedings of the workshop on computational creativity (CC’04), Madrid, Spain.

    Google Scholar 

  • McAdams, S., & Cunible, J. C. (1992). Perception of timbral analogies. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 336(1278), 383–389.

    Article  Google Scholar 

  • McDermott, J. (2013). Evolutionary and generative music informs music HCI—and vice versa. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human-computer interaction (pp. –). London: Springer. ISBN 978-1-4471-2989-9.

    Google Scholar 

  • McDermott, J., Griffith, N. J. L., & O’Neill, M. (2007). Evolutionary GUIs for sound synthesis. In Applications of evolutionary computing. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Miranda, E. R. (1995). An artificial intelligence approach to sound design. Computer Music Journal, 19(2), 59–75.

    Article  Google Scholar 

  • Miranda, E. R. (1998). Striking the right note with ARTIST: An AI-based synthesiser. In M. Chemillier & F. Pachet (Eds.), Recherches et applications en informatique musicale. Paris: Editions Hermes.

    Google Scholar 

  • Moorer, J. A. (1973). The heterodyne filter as a tool for analysis of transient waveforms. Stanford: Stanford Artificial Intelligence Laboratory.

    Google Scholar 

  • Moravec, O., & Stepánek, J. (2003). Verbal description of musical sound timbre in Czech language. In Proceedings of the Stockholm Music Acoustics Conference (SMAC’03), Stockholm.

    Google Scholar 

  • Nicol, C. A. (2005). Development and exploration of a timbre space representation of audio. PhD thesis, Department of Computing Science. Glasgow: University of Glasgow.

    Google Scholar 

  • Plomp, R. (1976). Aspects of tone sensation. New York: Academic.

    Google Scholar 

  • Pratt, R. L., & Doak, P. E. (1976). A subjective rating scale for timbre. Journal of Sound and Vibration, 45(3), 317–328.

    Article  Google Scholar 

  • Pressing, J. (1992). Synthesiser performance and real-time techniques. Madison: A-R Editions.

    Google Scholar 

  • Risset, J. C., & Wessel, D. L. (1999). Exploration of timbre by analysis and synthesis. In D. Deutsch (Ed.), The psychology of music. San Diego: Academic.

    Google Scholar 

  • Rolland, P.-Y., & Pachet, F. (1996). A framework for representing knowledge about synthesizer programming. Computer Music Journal, 20(3), 47–58.

    Article  Google Scholar 

  • Sandell, G., & Martens, W. (1995). Perceptual evaluation of principal components-based synthesis of musical timbres. Journal of the Audio Engineering Society, 43(12), 1013–1028.

    Google Scholar 

  • Seago, A. (2009). A new user interface for musical timbre design. Ph.D thesis, Faculty of Mathematics, Computing and Technology, The Open University.

    Google Scholar 

  • Seago, A., Holland, S., & Mulholland, P. (2004). A critical analysis of synthesizer user interfaces for timbre. HCI 2004: Design for Life, Leeds, British HCI Group.

    Google Scholar 

  • Seago, A., Holland, S., & Mulholland, P. (2005). Towards a mapping of timbral space. In Conference on Interdisciplinary Musicology (CIM05), Montreal, Canada.

    Google Scholar 

  • Takagi, H. (2001). Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation. Proceedings of the IEEE, 89(9), 1275–1296.

    Google Scholar 

  • Takala, T., Hahn, J., Gritz, L., Geigel, J., & Lee, J.W. (1993). Using physically-based models and genetic algorithms for functional composition of sound signals, synchronized to animated motion. In Proceedings of the International Computer Conference (ICMC’93), Tokyo, Japan.

    Google Scholar 

  • Vertegaal, R., & Bonis, E. (1994). ISEE: An intuitive sound editing environment. Computer Music Journal, 18(2), 21–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Seago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Seago, A. (2013). A New Interaction Strategy for Musical Timbre Design. In: Holland, S., Wilkie, K., Mulholland, P., Seago, A. (eds) Music and Human-Computer Interaction. Springer Series on Cultural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-2990-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2990-5_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2989-9

  • Online ISBN: 978-1-4471-2990-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics