Skip to main content

Measurements in Burns

  • Chapter
  • First Online:
Measurements in Wound Healing

Abstract

Measurement is fundamental to the assessment of patients with burns throughout their care. Burns are common injuries, with potentially serious sequelae [1, 2]. Burn injuries produce a major drain on health service resources and are a source of national economic loss [3] (UK Government 2006). Survival following a burn injury is directly related to the extent and depth of the burn as well as being influenced by additional risk factors such as inhalation injury, pre-existing illness and age. There is considerable evidence that doctors working in Emergency Departments may lack sufficient experience to make an accurate assessment of the seriousness of a burn and may overlook other risk factors. This may have a significant effect upon the final outcome [4–6]. Throughout the burn patient’s hospital stay it is necessary to measure the response to treatment in order to tailor the healthcare to individual need. Once treatment is complete there are further opportunities to measure outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hettiaratchy S, Dziewulski P. The ABC of Burns. Br Med J. 2004;328:1366–8.

    Google Scholar 

  2. Pruitt Jr BA, Goodwin CW, Mason Jr AD. Epidemiological, demographic and outcome characteristics of burn injury. In: Herndon DN, editor. Total burn care. London: WB Saunders; 2002.

    Google Scholar 

  3. Hemmington-Gorse S, Drew PJ, Potokar TS, Carroll G, Laing JHL, Dickson WA. The true cost of burns injury. 40th Annual Scientific Meeting of the British Burns Association, 2007; [Abstract]

    Google Scholar 

  4. Collis N, Smith G, Fenton OM. Accuracy of burn size estimation and subsequent fluid resuscitation prior to arrival at the Yorkshire regional burns unit. A three year retrospective study. Burns. 1998;25:345–51.

    Google Scholar 

  5. Hagstrom M, Wirth GA, Evans GRD, Ikeda CJ. A review of emergency department fluid resuscitation of burns patients transferred to a regional, verified burns center. Ann Plast Surg. 2003;51:173–6.

    PubMed  Google Scholar 

  6. Irwin IR, Reid CA, McLean NR. Burns in children: do casualty officers get it right? Burns. 1993;24:187–8.

    CAS  Google Scholar 

  7. McBane D. Expert sword-man’s companion. In: Rector M, editor. Highland swordsmanship: techniques of the Scottish swordmasters. Texas: Chivalry Bookshelf; 1728. 2001.

    Google Scholar 

  8. Baxter CR, Shires T. Physiological response to crystalloid resuscitation of severe burns. Ann N Y Acad Sci. 1968;150:874–94.

    PubMed  CAS  Google Scholar 

  9. Muir TS, Barclay IFK. Burns and their treatment. London: Lloyd-Luke (Medical Books) Ltd; 1962.

    Google Scholar 

  10. Rossiter ND, Chapman P, Haywood IA. How big is a hand? Burns. 1996;22:230–1.

    PubMed  CAS  Google Scholar 

  11. Jose RM, Roy DK, Vidyadharan R, Erdmann M. Burns area estimation- an error perpetuated. Burns. 2004;3:481–2.

    Google Scholar 

  12. Hidvegi N, Nduka C, Myers S, Dziewulski P. Estimation of breast burn size. Plast Reconstr Surg. 2004;113:1591.

    PubMed  Google Scholar 

  13. Yua CY, Linab CH, Yangc YH. Human body surface area database and estimation formula. Burns. 2010;36:616–29.

    Google Scholar 

  14. Kyle MJ, Wallace AB. Fluid replacement in burnt children. Br J Plast Surg. 1951;3:194.

    Google Scholar 

  15. Wachtel TL, Berry CC, Wachtel EE, Hugh A, Frank HA. The inter-rater reliability of estimating the size of burns from various burn area chart drawings. Burns. 2000;26:156–70.

    PubMed  CAS  Google Scholar 

  16. Treharne LJ, Kay A. The initial management of acute burns. J R Army Med Corps. 2004;150:74–81.

    Google Scholar 

  17. Ong J, Clarke A, White P, Johnson MA, Withey S, Butler PE. Objective evidence for the use of polylactic acid implants in HIV associated facial lipoatrophy using three dimensional surface laser scanning and psychological assessment. J Plast Reconstr Aesthet Surg. 2009;62(12):1627–35.

    PubMed  CAS  Google Scholar 

  18. Bull JP, Lennard Jones JE. The impairment of sensation in burns and its clinical application as a test of the depth of skin loss. Clin Sci. 1949;8:155–67.

    PubMed  CAS  Google Scholar 

  19. Dingwall JA. A clinical test for differentiating second from third degree burns. Ann Surg. 1943;118(3):427–9.

    PubMed  CAS  Google Scholar 

  20. Jackson DM. The diagnosis of the depth of burning. Br J Surg. 1953;40:588–96.

    PubMed  CAS  Google Scholar 

  21. Patey DH, Scarff RW. The diagnosis of the depth of skin destruction in burns and its bearing on treatment. Br J Surg. 1944;32:32–5.

    Google Scholar 

  22. Alsbjorn B, Micheels J, Sorensen B. Laser Doppler flowmetry measurements of superficial dermal, deep dermal and subdermal burns. Scand J Plast Reconstr Surg. 1984;18(1):75–9.

    PubMed  CAS  Google Scholar 

  23. Godina M, Derganc M, Brcic A. The reliability of clinical assessment of the depth of burns. Burns. 1978;4:92–6.

    Google Scholar 

  24. Gursu KG. An experimental study for diagnosis of burn depth. Burns. 1978;4(2):97–103.

    Google Scholar 

  25. Niazi ZB, Essex TJ, Papini R, Scott D, McLean NR, Black MJ. New laser Doppler scanner, a valuable adjunct in burn depth assessment. Burns. 1993;19(6):485–9.

    PubMed  CAS  Google Scholar 

  26. Yeong EK, Mann R, Goldberg M, Engrav L, Heimbach D. Improved accuracy of burn wound assessment using laser Doppler. J Trauma. 1996;40(6):956–62.

    PubMed  CAS  Google Scholar 

  27. Heimbach DM, Afromowitz MA, Engrav LH, Marvin JA, Perry B. Burn depth estimation-man or machine. J Trauma. 1984;24(5):373–8.

    PubMed  CAS  Google Scholar 

  28. Chilcott RP, Brown RFR, Rice P. Non-invasive quantification of skin injury resulting from exposure to sulphur mustard and lewisite vapours. Burns. 2000;26(3):245–50.

    PubMed  CAS  Google Scholar 

  29. Yeong E-K, Hsiao T-C, Chiang HK, Lin C-W. Prediction of burn healing time using artificial neural networks and reflectance spectrometer. Burns. 2005;31:415–20.

    PubMed  Google Scholar 

  30. Papp A, Kiraly K, Harma M, Lahtinen T, Uusaro A, Alhava E. The progression of burn depth in experimental burns: a histological and methodological study. Burns. 2004;30(7):684–90.

    PubMed  CAS  Google Scholar 

  31. Watts AM, Tyler MP, Perry ME, Roberts AH, McGrouther DA. Burn depth and its histological measurement. Burns. 2001;27(2):154–60.

    PubMed  CAS  Google Scholar 

  32. Converse JM, Platt JM, Ballantyne Jr DL. An experimental evaluation of a histochemical diagnosis of burn depth. J Surg Res. 1965;5(12):547–51.

    PubMed  CAS  Google Scholar 

  33. Ho-Asjoe M, Chronnell CM, Frame JD, Leigh IM, Carver N. Immunohistochemical analysis of burn depth. J Burn Care Rehabil. 1999;20(3):207–11.

    PubMed  CAS  Google Scholar 

  34. Kahn AM, McCrady VL, Rosen VJ. Burn wound biopsy. Multiple uses in patient management. Scand J Plast Reconstr Surg. 1979;13(1):53–6.

    PubMed  CAS  Google Scholar 

  35. Bauer JA, Sauer T. Cutaneous 10 MHz ultrasound B scan allows the quantitative assessment of burn depth. Burns. 1989;15(1):49–51.

    CAS  Google Scholar 

  36. Cantrell JH. Can ultrasound assist an experienced surgeon in estimating burn depth? J Trauma. 1984;24:S64–70.

    PubMed  Google Scholar 

  37. Kalus AM, Aindow J, Caulfield MR. Application of ultrasound in assessing burn depth. Lancet. 1979;1(8109):188–9.

    PubMed  CAS  Google Scholar 

  38. Wachtel TL, Leopold GR, Frank HA, Frank DH. B-mode ultrasonic echo determination of depth of thermal injury. Burns. 1986;12(6):432–7.

    CAS  Google Scholar 

  39. Park BH, Saxer C, Srinivas SM, Nelson JS, deBoer JF. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. J Biomed Opt. 2001;6(4):474–9.

    PubMed  CAS  Google Scholar 

  40. Srinivas SM, de Boer JF, Park BH, Keikhanzadeh K, Huang HL, Zhang J, Jung WQ, Chen Z, Nelson JS. Determination of burn depth by polarisation-sensitive optical coherence tomography. J Biomed Opt. 2004;9(1):207–12.

    PubMed  Google Scholar 

  41. Gatti JE, LaRossa D, Silverman DG, Hartford CE. Evaluation of the burn wound with perfusion fluorometry. J Trauma. 1983;23(3):202–6.

    PubMed  CAS  Google Scholar 

  42. Goulian D, Conway H. Dye differentiation of injured tissues in burn injury. Surg Gynecol Obstet. 1965;121(1):3–7.

    PubMed  Google Scholar 

  43. Randolph JG, Leape LL, Gross RE. The early surgical treatment of burns. 1. Experimental studies utilizing intravenous vital dye for determining the degree of injury. Surgery. 1964;56:193–202.

    PubMed  CAS  Google Scholar 

  44. Jersild C, Jensen HE. Determination of depth of burns by tetracycline fluorescence. Scand J Plast Reconstr Surg. 1968;2(1):36–8.

    PubMed  CAS  Google Scholar 

  45. Leonard LG, Munster AM, Su CT. Adjunctive use of intravenous fluorescein in the tangential excision of burns of the hands. Plast Reconstr Surg. 1980;66(1):30–3.

    PubMed  CAS  Google Scholar 

  46. Peled IJ, Har-Shai Y, Ullman Y. Fluorescein and burn depth. Burns. 1993;19(1):90.

    PubMed  CAS  Google Scholar 

  47. Sheridan RL, Schomaker KT, Lucchina LC, et al. Burn depth estimation by use of indocyanine green fluorescence: initial human trial. J Burn Care Rehabil. 1995;16(6):602–4.

    PubMed  CAS  Google Scholar 

  48. Bennett JE, Dingman RO. Evaluation of burn depth by the use of radioactive isotopes – an experimental study. Plast Reconstr Surg. 1957;20(4):261–72.

    CAS  Google Scholar 

  49. Sejrsen P. Atraumatic local labelling of skin by xenon-133 for blood flow measurement. Use of xenon-133 clearance methods in burns. Scand J Plast Reconstr Surg. 1986;2:39–43.

    Google Scholar 

  50. Anselmo VJ, Zawacki BE. Infra red photography as a diagnostic tool for the burn ward. Proc Soc Photo Optical Instr Eng. 1973;8:181.

    Google Scholar 

  51. Cole RP, Jones SG, Shakespeare PG. Thermographic assessment of hand burns. Burns. 1990;16(1):60–3.

    PubMed  CAS  Google Scholar 

  52. Cole RP, Shakespeare PG, Chissell HG, et al. Thermographic assessment of burns using a non-permeable membrane as wound covering. Burns. 1991;17:117–22.

    PubMed  CAS  Google Scholar 

  53. Lawson RN, Wlodek GD, Webster DR. Thermographic assessment of burns and frostbite. Can Med Assoc J. 1961;84:1129–31.

    PubMed  CAS  Google Scholar 

  54. Liddington MI, Shakespeare PG. Timing of the thermographic assessment of burns. Burns. 1996;22(1):26–8.

    PubMed  CAS  Google Scholar 

  55. Mason BR, Graff AJ, Pegg SP. Colour thermography in the diagnosis of the depth of burn injury. Burns. 1981;7:197–202.

    Google Scholar 

  56. Mladick R, Georgiade N, Thorne F. A clinical evaluation of the use of thermography in determining degree of burn injury. Plast Reconstr Surg. 1966;38(6):512–8.

    PubMed  CAS  Google Scholar 

  57. Newman P, Pollock M, Reid WH. A practical technique for the thermographic estimation of burn depth: a preliminary report. Burns. 1981;8(1):59–63.

    Google Scholar 

  58. McGill DJ, Sørensen K, Mackay IR, Taggart I, Watson SB. Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy. Burns. 2007;33:833–42.

    PubMed  CAS  Google Scholar 

  59. Atiles L, Mileski W, Purdue G, Hunt J, Baxter C. Laser Doppler flowmetry in burn wounds. J Burn Care Rehabil. 1995;16(4):388–93.

    PubMed  CAS  Google Scholar 

  60. Brown RFR, Rice P, Bennett NJ. The use of laser Doppler imaging as an aid in clinical management decision making in the treatment of vesicant burns. Burns. 1998;24:692–8.

    PubMed  CAS  Google Scholar 

  61. Baker RD, Weinand C, Jeng JC, Hoeksema H, Monstrey S, Pape SA, Spence R, Wilson D. Using ordinal logistic regression to evaluate the performance of laser-Doppler predictions of burn-healing time. BMC Med Res Methodol. 2009;9:11.

    PubMed  Google Scholar 

  62. Holland AJ, Martin HC, Cass DT. Laser Doppler imaging prediction of burn wound outcome in children. Burns. 2002;28(1):11–7.

    PubMed  CAS  Google Scholar 

  63. Jeng JC, Clarke TJ, Bridgeman A, Shivnan L, Thornton PM, Alam H, Clarke TJ, Jablonski KA, Jordan MH. Laser Doppler imaging determines need for excision and grafting in advance of clinical judgement: a prospective blinded trial. Burns. 2003;29:665–70.

    PubMed  CAS  Google Scholar 

  64. La Hei ER, Holland AJA, Martin HC. Laser Doppler imaging of paediatric burns: burn wound outcome can be predicted independent of clinical examination. Burns. 2006;32(5):550–3.

    PubMed  Google Scholar 

  65. Monstrey SM, Hoeksema H, Baker RD, Jeng J, Spence RS, Wilson D, Pape SA. Burn wound healing time assessed by laser Doppler imaging. Part 2: validation of a dedicated colour code for image interpretation. Burns. 2011;37(2):249–56.

    PubMed  CAS  Google Scholar 

  66. Hoeksema H, Van de Sijpe K, Tondu T, Hamdi M, Van Landuyt K, Blondeel P, Monstrey S. Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn. Burns. 2009;35(1):36–45.

    PubMed  Google Scholar 

  67. Pape SA, Skouras CA, Byrne PO. An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth. Burns. 2001;27:233–9.

    PubMed  CAS  Google Scholar 

  68. Pape SA, Byrne PO. Burn depth measurement by laser Doppler imaging (LDI) reduces the surgical workload of a burn unit [Abstract]. 9th Congress of the European Burns Association. Sept 2001; Lyon, France.

    Google Scholar 

  69. Ng D, Tay S, Booth S, Gilbert PM, Dheansa BS. The use of laser Doppler imaging for burn depth assessment after application of flammacerium. Burns. 2007;33(3):396–7.

    PubMed  Google Scholar 

  70. Anselmo VJ, Zawacki BE. Effect of evaporative surface cooling on thermographic assessment of burn depth. Radiology. 1977;123(2):331–2.

    PubMed  CAS  Google Scholar 

  71. Cubison TCS, Pape SA, Parkhouse N. Evidence for the link between healing time and the development of hypertrophic scars (HTS) in paediatric burns due to scald. Burns. 2006;32:992–9.

    PubMed  Google Scholar 

  72. Shirley R, Varnadeva S, Cubison TC, Pape SA. Evidence for the link between healing times, patient age and hypertrophic scar formation in adult burns. Montreal: International Society for Burn Injury; 2008 [Abstract].

    Google Scholar 

  73. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.

    PubMed  CAS  Google Scholar 

  74. Krob MJ, D’Amico FJ, Ross D. Do trauma scores accurately predict outcomes for patients with burns? J Burn Care Rehabil. 1991;12:560–3.

    PubMed  CAS  Google Scholar 

  75. Bull JP. Revised analysis of mortality due to burns. Lancet. 1971;298:1133–4.

    Google Scholar 

  76. Fitzpatrick JC, Ciioffi WG. Diagnosis and treatment of inhalation injury. In: Herndon DH, editor. Total burn care. London: Harcourt; 2002.

    Google Scholar 

  77. LaLonde C, Picard L, Youn YK, Demling RH. Increased early postburn fluid requirements and oxygen demands are predictive of the degree of airways injury by smoke inhalation. J Trauma. 1995;38:175–84.

    PubMed  CAS  Google Scholar 

  78. Navar PD, Saffle JR, Warden GD. Effect of inhalation injury on fluid resuscitation requirements after thermal injury. Am J Surg. 1985;150:716–20.

    PubMed  CAS  Google Scholar 

  79. Clark CJ, Campbell D, Reid WH. Blood carboxyhaemoglobin and cyanide levels in fire survivors. Lancet. 1981;317(8234):1332–5.

    Google Scholar 

  80. Dries DH, Waxman K. Adequate resuscitation of burn patients may not be measured by urine output and vital signs. Crit Care Med. 1991;19:327–9.

    PubMed  CAS  Google Scholar 

  81. Schiller WR, Bay RC, Garren RL, Parker I, Sagraves SG. Hyperdynamic resuscitation improves survival in patients with life-threatening burns. J Burn Care Rehabil. 1997;18:10–6.

    PubMed  CAS  Google Scholar 

  82. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.

    PubMed  CAS  Google Scholar 

  83. Csontos C, Foldi V, Fischer T, Bogar L. Arterial thermodilution in burn patients suggests a more rapid fluid administration during early resuscitation. Acta Anaesthesiol Scand. 2008;52(6):742–9.

    PubMed  CAS  Google Scholar 

  84. Holm C, Mayr M, Horbrand F, Tegeler J, von Donnersmarck HG, Muhlbauer W, Pfeiffer UJ. Reproducibility of transpulmonary thermodilution measurements in patients with burn shock and hypothermia. J Burn Care Rehab. 2005;26(3):260–5.

    Google Scholar 

  85. Kuntscher MV, Blome Eberwein S, Pelzer M, Erdmann D, Germann G. Transcardiopulmonary vs pulmonary arterial thermodilution methods for hemodynamic monitoring of burned patients. J Burn Care Rehabil. 2002;23(1):21–6.

    PubMed  Google Scholar 

  86. Addy AV, Higgins DJ, Singer M. Use of the oesophageal Doppler to facilitate resuscitation. Emerg Med. 2009;5:37–9.

    Google Scholar 

  87. Etherington L, Saffle J, Cochran A. Use of transesophageal echocardiography in burns: a retrospective review. J Burn Care Res. 2010;31(1):36–9.

    PubMed  Google Scholar 

  88. Higgins D, Singer M. Transoesophageal Doppler for continuous haemodynamic monitoring. Br J Intensive Care. 1993;3:376–8.

    Google Scholar 

  89. Steer JA, Papini RP, Wilson AP, McGrouther DA, Parkhouse N. Quantitative microbiology in the management of burn patients. I. Correlation between quantitative and qualitative burn wound biopsy culture and surface alginate swab culture. Burns. 1996;22(3):173–6.

    PubMed  CAS  Google Scholar 

  90. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309–32.

    PubMed  Google Scholar 

  91. Pallua N, Fuchs PC, Hafemann B, Völpel U, Noah M, Lütticken R. A new technique for quantitative bacterial assessment on burn wounds by modified dermabrasion. J Hosp Infect. 1999;42(4):329–37.

    PubMed  CAS  Google Scholar 

  92. Levine NS, Lindberg RB, Mason Jr AD, Pruitt Jr BA. The quantitative swab culture and smear: a quick, simple method for determining the number of viable aerobic bacteria on open wounds. J Trauma. 1976;16(2):89–94.

    PubMed  CAS  Google Scholar 

  93. Freshwater MF, Su CT. Potential pitfalls of quantitative burn wound biopsy cultures. Ann Plast Surg. 1980;4(3):216–8.

    PubMed  CAS  Google Scholar 

  94. Shires GT, Dineen P. Sepsis following burns, trauma, and intra-abdominal infections. Arch Intern Med. 1982;142(11):2012–22.

    PubMed  CAS  Google Scholar 

  95. Tahlan RN, Keswani RK, Saini S, Miglani OP. Correlation of quantitative burn wound biopsy culture and surface swab culture to burn wound sepsis. Burns. 1984;10(3):217–24.

    CAS  Google Scholar 

  96. Liedberg NC-F, Reiss E, Artz CP. Effects of bacteria on take of split thickness skin grafts in rabbits. Ann Surg. 1955;142:92–6.

    PubMed  CAS  Google Scholar 

  97. Pruitt Jr BA, Foley FD. The use of biopsies in burn patient care. Surgery. 1973;73(6):887–97.

    PubMed  Google Scholar 

  98. Volenec FJ, Clark GM, Mani MM, Humphrey LJ. Burn wound biopsy bacterial quantitation: a statistical analysis. Am J Surg. 1979;138(5):695–7.

    PubMed  CAS  Google Scholar 

  99. McManus AT, Kim SH, McManus WF, Mason Jr AD, Pruitt Jr BA. Comparison of quantitative microbiology and histopathology in divided burn-wound biopsy specimens. Arch Surg. 1987;122(1):74–6.

    PubMed  CAS  Google Scholar 

  100. Steer JA, Papini RP, Wilson AP, McGrouther DA, Parkhouse N. Quantitative microbiology in the management of burn patients. II. Relationship between bacterial counts obtained by burn wound biopsy culture and surface alginate swab culture, with clinical outcome following burn surgery and change of dressings. Burns. 1996;22(3):177–81.

    PubMed  CAS  Google Scholar 

  101. Bariar LM, Vasenwala SM, Malik A, Ansari GH, Chowdhury TE. A clinicopathological study of infections in burn patients and importance of biopsy. J Indian Med Assoc. 1997;95(11):573–5.

    PubMed  CAS  Google Scholar 

  102. Bharadwaj R, Joshi BN, Phadke SA. Assessment of burn wound sepsis by swab, full thickness biopsy culture and blood culture–a comparative study. Burns Incl Therm Inj. 1983;10(2):124–6.

    PubMed  CAS  Google Scholar 

  103. Breuing K, Kaplan S, Liu P, Onderdonk AB, Eriksson E. Wound fluid bacterial levels exceed tissue bacterial counts in controlled porcine partial-thickness burn infections. Plast Reconstr Surg. 2003;111(2):781–8.

    PubMed  Google Scholar 

  104. Buchanan K, Heimbach DM, Minshew BH, Coyle MB. Comparison of quantitative and semiquantitative culture techniques for burn biopsy. J Clin Microbiol. 1986;23(2):258–61.

    PubMed  CAS  Google Scholar 

  105. Loebl EC, Marvin JA, Heck EL, Curreri PW, Baxter CR. The method of quantitative burn-wound biopsy cultures and its routine use in the care of the burned patient. Am J Clin Pathol. 1974;61(1):20–4.

    PubMed  CAS  Google Scholar 

  106. Nagoba BS, Deshmukh SR, Wadher BJ, Pathan AB. Bacteriological analysis of burn sepsis. Indian J Med Sci. 1999;53(5):216–9.

    PubMed  CAS  Google Scholar 

  107. Woolfrey BF, Fox JM, Quall CO. An evaluation of burn wound quantitative microbiology. I. Quantitative eschar cultures. Am J Clin Pathol. 1981;75(4):532–7.

    PubMed  CAS  Google Scholar 

  108. Herruzo-Cabrera R, Vizcaino-Alcaide MJ, Pinedo-Castillo C, Rey-Calero J. Diagnosis of local infection of a burn by semiquantitative culture of the eschar surface. J Burn Care Rehabil. 1992;13(6):639–41.

    PubMed  CAS  Google Scholar 

  109. Uppal SK, Ram S, Kwatra B, Garg S, Gupta R. Comparative evaluation of surface swab and quantitative full thickness wound biopsy culture in burn patients. Burns. 2007;33(4):460–3.

    PubMed  Google Scholar 

  110. Sjőberg T, Mzezewa S, Jőnnson K, Robertson V, Salemark L. Comparison of surface swab cultures and quantitative tissue biopsy cultures to predict sepsis in burn patients: a prospective study. J Burn Care Rehabil. 2003;24(6):365–70.

    PubMed  Google Scholar 

  111. Taddonio TE, Thomson PD, Tait MJ, Prasad JK, Feller I. Rapid quantification of bacterial and fungal growth in burn wounds: biopsy homogenate gram stain versus microbial culture results. Burns Incl Therm Inj. 1988;14(3):180–4.

    PubMed  CAS  Google Scholar 

  112. Murray CK, Hoffmaster RM, Schmit DR, Hospenthal DR, Ward JA, Cancio LC, Wolf SE. Evaluation of white blood cell count, neutrophil percentage, and elevated temperature as predictors of bloodstream infection in burn patients. Arch Surg. 2007;142(7):639–42.

    PubMed  Google Scholar 

  113. Bruck HM, Nash G, Foley D, Pruitt Jr BA. Opportunistic fungal infection of the burn wound with phycomycetes and aspergillus. A clinical-pathologic review. Arch Surg. 1971;102(5):476–82.

    PubMed  CAS  Google Scholar 

  114. Barrow RE, Przkora R, Hawkins HK, Barrow LN, Jeschke MG, Herndon DN. Mortality related to gender, age, sepsis, and ethnicity in severely burned children. Shock. 2005;23(6):485–7.

    PubMed  Google Scholar 

  115. Saffle JR, Hildreth M. Metabolic support of the burned patient. In: Herndon D, editor. Total burn care. London: Harcourt; 2002.

    Google Scholar 

  116. Rettmer RL, Williamson JC, Labbé RF, Heimbach DM. Laboratory monitoring of nutritional status in burn patients. Clin Chem. 1992;38(3):334–7.

    PubMed  CAS  Google Scholar 

  117. Cavani A, Zambruno G, Marconi A, Manca V, Marchetti M, Giannetti A. Distinctive integrin expression in the newly forming epidermis during wound healing in humans. J Invest Dermatol. 1993;101(4):600–4.

    PubMed  CAS  Google Scholar 

  118. Ioannovich J, Tsati E, Tsoutsos D, Frangia K, et al. Moist exposed burn therapy: evaluation of the epithelial repair process (an experimental model). Ann Burns Fire Disast. 2000;13:3.

    Google Scholar 

  119. Goretsky MJ, Supp AP, Grcenhalgh DG, Warden GD, Boyce ST. Surface electrical capacitance as an index of epidermal barrier properties of composite skin substitutes and skin autografts. Wound Repair Regen. 1995;3:419–25.

    PubMed  CAS  Google Scholar 

  120. Jemec GBE, Serup J. The relationship between electrical capacitance and the mechanical properties of human skin in viva. Acta Derm Venereol (Stockh). 1990;70:245–7.

    CAS  Google Scholar 

  121. Magnusson M, Papini RP, Rea SM, Read CC, Wood FM. Cultured autologous keratinocytes in suspension accelerate epithelial maturation in an in vivo wound model as measured by surface electrical capacitance. Plast Reconstr Surg. 2007;119(2):495–9.

    PubMed  CAS  Google Scholar 

  122. Hauser J, Lehnhardt M, Daigeler A, Langer S, Steinau HU, Vogt PM. Photoplanimetric evaluation and impedance measurement of split-thickness skin grafts: a new model for objective wound-healing assessment in clinical trials. Skin Res Technol. 2009;15(2):168–71.

    PubMed  CAS  Google Scholar 

  123. Atiyeh BS. [letter] Ann Burns Fire Disasters. 2000;14:3.

    Google Scholar 

  124. Draaijers LJ, Tempelman FR, Botman YA, Tuinebreijer WE, Middelkoop E, Kreis RW, van Zuijlen PP. The patient and observer scar assessment scale: a reliable and feasible tool for scar evaluation. Plast Reconstr Surg. 2004;113(7):1960–5; discussion 1966-7.

    PubMed  Google Scholar 

  125. Fisher I, Strong J, Tyack Z. Development, reliability, and concurrent validity of the modified inventory of potential reconstructive needs. J Burn Care Rehabil. 2001;22(2):154–62.

    PubMed  CAS  Google Scholar 

  126. Martin D, Umraw N, Gomez M, Cartotto R. Changes in subjective vs objective burn scar assessment over time: does the patient agree with what we think? J Burn Care Rehabil. 2003;24(4):239–44.

    PubMed  Google Scholar 

  127. Powers PS, Sarkar S, Goldgof DB, Cruse CW, Tsap LV. Scar assessment: current problems and future solutions. J Burn Care Rehabil. 1999;20(1 Pt 1):54–60; discussion 53.

    PubMed  CAS  Google Scholar 

  128. Brusselaers N, Pirayesh A, Hoeksema H, Verbelen J, Blot S, Monstrey SJ. Burn scar assessment: a systematic review of different scar scales. J Surg Res. 2010;164(1):e115–23.

    PubMed  Google Scholar 

  129. Sullivan T, Smith J, Kermode J, McIver E, Courtemanche DJ. Rating the burn scar. J Burn Care Rehabil. 1990;11(3):256–60.

    PubMed  CAS  Google Scholar 

  130. Baryza MJ, Baryza GA. The Vancouver scar scale: an administrative tool and its interrater reliability. J Burn Care Rehabil. 1995;16:535–8.

    PubMed  CAS  Google Scholar 

  131. Beausang E, Floyd H, Dunn KW, Orton CI, Ferguson MW. A new quantitative scale for clinical scar assessment. Plast Reconstr Surg. 1998;102(6):1954–61.

    PubMed  CAS  Google Scholar 

  132. Masters M, McMahon M, Svens B. Reliability testing of a new scar assessment tool, matching assessment of scars and photographs (MAPS). J Burn Care Rehabil. 2005;26(3):273–84.

    PubMed  Google Scholar 

  133. Nedelec B, Shankowsky HA, Tredget EE. Rating the resolving hypertrophic scar: comparison of the Vancouver scar scale and scar volume. J Burn Care Rehabil. 2000;21(3):205–12.

    PubMed  CAS  Google Scholar 

  134. Oliveira GV, Chinkes D, Mitchell C, Oliveras G, Hawkins HK, Herndon DN. Objective assessment of burn scar vascularity, erythema, pliability, thickness, and planimetry. Dermatol Surg. 2005;31(1):48–58.

    PubMed  CAS  Google Scholar 

  135. Wang ZY, Zhang J, Lu SL. Objective evaluation of burn and post-surgical scars and the accuracy of subjective scar type judgment. Chin Med J (Engl). 2008;121(24):2517–20.

    Google Scholar 

  136. Yeong EK, Mann R, Engrav LH, Goldberg M, Cain V, Costa B, Moore M, Nakamura D, Lee J. Improved burn scar assessment with use of a new scar-rating scale. J Burn Care Rehabil. 1997;18(4):353–5.

    PubMed  CAS  Google Scholar 

  137. Selvaggi G, Boeckx W, De Wulf M, Van den Kerckhove E. Late results of burn wound scar after cerium nitrate-silver sulfadiazine and compressive therapy: scanning electron microscopy evaluation of a keloid scar. Plast Reconstr Surg. 2007;119(6):1965–7.

    PubMed  CAS  Google Scholar 

  138. Cheng W, Saing H, Zhou H, Han Y, Peh W, Tam PK. Ultrasound assessment of scald scars in Asian children receiving pressure garment therapy. J Pediatr Surg. 2001;36(3):466–9.

    PubMed  CAS  Google Scholar 

  139. Du YC, Lin CM, Chen YF, Chen CL, Chen T. Implementation of a burn scar assessment system by ultrasound techniques. Conf Proc IEEE Eng Med Biol Soc. 2006;1:2328–31.

    PubMed  Google Scholar 

  140. Fong SS, Hung LK, Cheng JC. The cutometer and ultrasonography in the assessment of postburn hypertrophic scar–a preliminary study. Burns. 1997;23 Suppl 1:S12–8.

    PubMed  Google Scholar 

  141. Hambleton J, Shakespeare PG, Pratt BJ. The progress of hypertrophic scars monitored by ultrasound measurements of thickness. Burns. 1992;18(4):301–7.

    PubMed  CAS  Google Scholar 

  142. Lau JC, Li-Tsang CW, Zheng YP. Application of tissue ultrasound palpation system (TUPS) in objective scar evaluation. Burns. 2005;31(4):445–52.

    PubMed  Google Scholar 

  143. Wang XQ, Mill J, Kravchuk O, Kimble RM. Ultrasound assessed thickness of burn scars in association with laser Doppler imaging determined depth of burns in paediatric patients. Burns. 2010;36(8):1254–62.

    PubMed  Google Scholar 

  144. Tyack ZF, Pegg S, Ziviani J. Postburn dyspigmentation: its assessment, management, and relationship to scarring–a review of the literature. J Burn Care Rehabil. 1997;18(5):435–40.

    PubMed  CAS  Google Scholar 

  145. Cheon YW, Lee WJ, Rah DK. Objective and quantitative evaluation of scar color using the L*a*b* color coordinates. J Craniofac Surg. 2010;21(3):679–84.

    PubMed  Google Scholar 

  146. Clarys P, Alewaeters K, Lambrecht R, Barel AO. Skin color measurements: comparison between three instruments: the Chromameter(R), the DermaSpectrometer(R) and the Mexameter(R). Skin Res Technol. 2000;6(4):230–8.

    PubMed  Google Scholar 

  147. Davey RB, Sprod RT, Neild TO. Computerised colour: a technique for the assessment of burn scar hypertrophy. A preliminary report. Burns. 1999;25(3):207–13.

    PubMed  CAS  Google Scholar 

  148. Li-Tsang CW, Lau JC, Liu SK. Validation of an objective scar pigmentation measurement by using a spectrocolorimeter. Burns. 2003;29(8):779–84.

    PubMed  Google Scholar 

  149. Nedelec B, Correa JA, Rachelska G, Armour A, LaSalle L. Quantitative measurement of hypertrophic scar: intrarater reliability, sensitivity, and specificity. J Burn Care Res. 2008;29(3):489–500.

    PubMed  Google Scholar 

  150. Van den Kerckhove E, Staes F, Flour M, Stappaerts K, Boeckx W. Reproducibility of repeated measurements on post-burn scars with dermascan C. Skin Res Technol. 2003;9(1):81–4.

    PubMed  Google Scholar 

  151. Allely RR, Van-Buendia LB, Jeng JC, White P, Wu J, Niszczak J, Jordan MH. Laser Doppler imaging of cutaneous blood flow through transparent face masks: a necessary preamble to computer-controlled rapid prototyping fabrication with submillimeter precision. J Burn Care Res. 2008;29(1):42–8.

    PubMed  Google Scholar 

  152. Bray R, Forrester K, Leonard C, McArthur R, Tulip J. Laser Doppler imaging of burn scars: a comparison of wavelength and scanning method. Burns. 2003;29:199–206.

    PubMed  Google Scholar 

  153. Clark JA, Leung KS, Cheng JC, Leung PC. The hypertrophic scar and microcirculation properties. Burns. 1996;22(6):447–50.

    PubMed  CAS  Google Scholar 

  154. Ehrlich HP, Kelley SF. Hypertrophic scar: an interruption in the remodeling of repair–a laser Doppler blood flow study. Plast Reconstr Surg. 1992;90(6):993–8.

    PubMed  CAS  Google Scholar 

  155. Hosoda G, Holloway GA, Heimbach DM. Laser Doppler flowmetry for the early detection of hypertrophic burn scars. J Burn Care Rehabil. 1986;7(6):496–7.

    PubMed  CAS  Google Scholar 

  156. Leung KS, Sher A, Clark JA, Cheng JC, Leung PC. Microcirculation in hypertrophic scars after burn injury. J Burn Care Rehabil. 1989;10(5):436–44.

    PubMed  CAS  Google Scholar 

  157. Musgrave MA, Umraw N, Fish JS, Gomez M, Cartotto RC. The effect of silicone gel sheets on perfusion of hypertrophic burn scars. J Burn Care Rehabil. 2002;23(3):208–14.

    PubMed  Google Scholar 

  158. Stewart CJ, Frank R, Forrester KR, Tulip J, Lindsay R, Bray RC. A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging. Burns. 2005;31(6):744–52.

    PubMed  CAS  Google Scholar 

  159. Van-Buendia LB, Allely RR, Lassiter R, Weinand C, Jordan MH, Jeng JC. What’s behind the mask? A look at blood flow changes with prolonged facial pressure and expression using laser Doppler imaging. J Burn Care Res. 2010;31(3):441–7.

    PubMed  Google Scholar 

  160. Corica GF, Wigger NC, Edgar DW, Wood FM, Carroll S. Objective measurement of scarring by multiple assessors: is the tissue tonometer a reliable option? J Burn Care Res. 2006;27(4):520–3.

    PubMed  Google Scholar 

  161. Esposito G, Ziccardi P, Scioli M, Pappone N, Scuderi N. The use of a modified tonometer in burn scar therapy. J Burn Care Rehabil. 1990;11(1):86–90.

    PubMed  CAS  Google Scholar 

  162. Lye I, Edgar DW, Wood FM, Carroll S. Tissue tonometry is a simple, objective measure for pliability of burn scar: is it reliable? J Burn Care Res. 2006;27(1):82–5.

    PubMed  Google Scholar 

  163. Rennekampff HO, Rabbels J, Reinhard V, Becker ST, Schaller HE. Comparing the Vancouver scar scale with the cutometer in the assessment of donor site wounds treated with various dressings in a randomized trial. J Burn Care Res. 2006;27(3):345–51.

    PubMed  Google Scholar 

  164. Bartell TH, Monafo WW, Mustoe TA. A new instrument for serial measurements of elasticity in hypertrophic scar. J Burn Care Rehabil. 1988;9(6):657–60.

    PubMed  CAS  Google Scholar 

  165. McHugh AA, Fowlkes BJ, Maevsky EI, Smith Jr DJ, Rodriguez JL, Garner WL. Biomechanical alterations in normal skin and hypertrophic scar after thermal injury. J Burn Care Rehabil. 1997;18(2):104–8.

    PubMed  CAS  Google Scholar 

  166. Singer AJ, Thode Jr HC, McClain SA. Development of a histomorphologic scale to quantify cutaneous scars after burns. Acad Emerg Med. 2000;7(10):1083–8.

    PubMed  CAS  Google Scholar 

  167. Palmieri TL, Petuskey K, Bagley A, Takashiba S, Greenhalgh DG, Rab GT. Alterations in functional movement after axillary burn scar contracture: a motion analysis study. J Burn Care Rehabil. 2003;24(2):104–8.

    PubMed  Google Scholar 

  168. Koller R, Kargűl G, Giovanoli P, Meissl G, Frey M. Quantification of functional results after facial burns by the faciometer. Burns. 2000;26(8):716–23.

    PubMed  CAS  Google Scholar 

  169. Lawrence JW, Fauerbach JA, Heinberg L, Doctor M. Visible vs hidden scars and their relation to body esteem. J Burn Care Rehabil. 2004;25(1):25–32.

    PubMed  Google Scholar 

  170. Franchitto N, Telmon N, Grolleau JL, Gavarri L, Laguerre J, Rougé D. Medicolegal evaluation of aesthetic impairment: particularities of post-burn scars. Burns. 2009;35(5):642–9. Epub 2009 Jan 23.

    PubMed  Google Scholar 

  171. The economic office of the Deputy Prime Minister The economic costs of fire: estimates for 2004. London: HMSO, 2006.

    Google Scholar 

  172. Bowser BH, Caldwell FT, Baker JA, Walls RC. Statistical methods to predict morbidity and mortality: self assessment techniques for burn units. Burns. 1983;9(5):318–26.

    CAS  Google Scholar 

  173. Bull JP, Fisher AJ. A study of burns at the Massachusetts General Hospital, 1939-1954. Ann Surg. 1954;145:210.

    Google Scholar 

  174. DuBois D, DuBois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916;17:863–71.

    CAS  Google Scholar 

  175. Forbes-Duchart L, Marshall S, Strock A, Cooper JE. Determination of inter-rater reliability in pediatric burn scar assessment using a modified version of the Vancouver scar scale. J Burn Care Res. 2007;28:460–7.

    PubMed  Google Scholar 

  176. Hackett ME. The use of thermography in the assessment of depth of burn and blood supply of flaps, with preliminary reports on it use in Dupuytren’s contracture and treatment of varicose ulcers. Br J Plast Surg. 1974;27:311–7.

    PubMed  CAS  Google Scholar 

  177. Lund C, Browder N. The estimation of area of burns. Surg Gynecol Obstet. 1944;79:352.

    Google Scholar 

  178. Roi LD, Flora JD, Davis TM, Cornell RG, Feller I. A severity grading chart for the burned patient. Ann Emerg Med. 1981;10:161–3.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Miss Christina C Mackenzie and Dr Rodrigo Figueiredo for logistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah A. Pape MB, ChB, FRCSEd (Plast), MClinEd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

McKinnell, T., Pape, S.A. (2012). Measurements in Burns. In: Mani, R., Romanelli, M., Shukla, V. (eds) Measurements in Wound Healing. Springer, London. https://doi.org/10.1007/978-1-4471-2987-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2987-5_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2986-8

  • Online ISBN: 978-1-4471-2987-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics