Skip to main content

Irradiation Damage

  • Chapter
  • First Online:
Materials for Nuclear Plants
  • 3900 Accesses

Abstract

Irradiation damage is one of the most important damage mechanisms for nuclear materials. Neutrons transfer their energy to atoms which start to jump creating vacancies and interstitials being responsible for formation of defect clusters or microstructural changes (segregations, phase reactions). Nuclear reactions or transmutation can create alpha particle emitters which leads to helium gas which has to be accomodated by the material. All these effects can significantly deteriorate materials properties and limit the life-time of components. In the first part of this chapter an introduction into the most important radiation damage effects will be given. In the second part the consequences of irradiation damage (hardening, embrittlement, segregation, swelling, radiation creep) of components for current and future nuclear plants will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schilling W, Ullmaier H (1994) Physics of radiation damage in metals. Mater Sci Technol VCH 10B:187

    Google Scholar 

  2. Ullmaier H, Schilling W (1980) Radiation damage in metallic reactor materials. In: Physics of modern materials, vol 1. IAEA Vienna

    Google Scholar 

  3. Was G (2007) Radiation materials science package. CD The minerals metals and materials society. 184 Thorn Hill Road Warrendale PA 15086 USA

    Google Scholar 

  4. Was G (2007) Fundamentals of radiation materials science. Springer, Berlin-Heidelberg

    Google Scholar 

  5. Seeger A (1962), Radiation damage in solids 1. IAEA Vienna: 101

    Google Scholar 

  6. Greenwood LR (1994) Neutron interactions with recoil spectra. J Nucl Mater 216:29–44

    Article  Google Scholar 

  7. Zinkle SJ, Maziasz PJ, Stoller RE (1993) Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel. J Nucl Mater 206:266–286

    Article  Google Scholar 

  8. Ullmaier H (1984) The influence of helium on the bulk properties of fusion reactor structural materials. Nucl Fusion 24:1039

    Article  Google Scholar 

  9. Schilling W, Burger G, Isebeck K, Wenzl H (1970) In: Seeger A, Schumacher D, Schilling W, Diehl J (eds) Vacancies and interstitials in metals. Amsterdam North Holland Phys Publication

    Google Scholar 

  10. Ehrhart P (1991) In: Ullmaier H (ed) Landolt-Bornstein 111/25 atomic defects in metals. Berlin, Springer-Verlag

    Google Scholar 

  11. Wiedersich H (1986) In: Physics of radiation effects in crystals Elsevier 237

    Google Scholar 

  12. Wiedersich H (1991) Effects of the primary recoil spectrum on microstructural evolution. J Nucl Mater 1799 181:70–75

    Google Scholar 

  13. Wiedersich H (1991) Evolution of defect cluster distribution during irradiation, ANL/CP—72655

    Google Scholar 

  14. Zinkle SJ (2008) Microstructures and mechanical properties of irradiated metals and alloys. In: Ghetta V et al. (eds) Materials issues for generation IV systems. Springer Science+Business Media B V, pp 227–244

    Google Scholar 

  15. Bacon DJ, Gao F, Osetsky YN (2000) The primary damage state in fcc, bcc and hcp metals as seen in molecular dynamics simulations. J Nucl Mater 276:1–12

    Article  Google Scholar 

  16. Bacon DJ, Osetsky YN, Stoller RH, Voskoboinikov RE (2003) MD description of damage production in displacement cascades in copper and alpha-iron. J Nucl Mater 323(2–3):152–162

    Article  Google Scholar 

  17. Singh NB, Zinkle SJ (1993) Defect accumulation in pure fcc metals in the transient regime: a review. J Nucl Mater 206:212–229

    Article  Google Scholar 

  18. Eldrup M, Singh BN, Zinkle SJ, Buyn TS, Farrel K (2002) Dose dependence of defect accumulation in neutron irradiated copper and iron. J Nucl Mater 307–311:912–917

    Article  Google Scholar 

  19. Zinkle SJ (2005) Fusion materials science: overview of challenges and recent progress. Phys Plasmas 12(5):058101

    Google Scholar 

  20. Zinkle SJ, Singh BN (2000) Microstructure of Cu-Ni alloys neutron irradiated at 210 and 420 °C to 14 dpa. J Nucl Mater 283–287:306–312

    Article  Google Scholar 

  21. Zinkle SJ, Snead LL (1995) Microstructure of copper and nickel irradiated with fission neutrons near 230 °C. J Nucl Mater 225:123–131

    Article  Google Scholar 

  22. Yao Z, Schäublin R, Victoria M (2003) Irradiation induced behavior of pure Ni single crystal irradiated with high energy protons. J Nucl Mater 323(2–3):388–393

    Article  Google Scholar 

  23. Zinkle SJ, Horsewell A, Singh BN, Sommer WF (1994) Defect microstructure in copper alloys irradiated with 750 MeV protons. J Nucl Mater 212–215:132–138

    Article  Google Scholar 

  24. Mansur LK, Lee EH (1991) Theoretical basis for unified analysis of experimental data and design of swelling-resistant alloys. J Nucl Mater 179–181:105–110

    Article  Google Scholar 

  25. Maziasz PJ (1993) Overview of microstructural evolution in neutron-irradiated austenitic stainless steels. J Nucl Mater 205:118–145

    Article  Google Scholar 

  26. Raj B, Mannan SL, Vasudeva PR, Rao A, Mathew MD (2002) Development of fuels and structural materials for fast breeder reactors. Sadhana 27(5):527–558

    Article  Google Scholar 

  27. Marwick AD (1978) Segregation in irradiated alloys: the inverse Kirkendall effect and the effect of constitution on void swelling. J Phys F Metal Phys 8 9

    Google Scholar 

  28. Was GS, Busby J, Andresen PL (2006) Effect of irradiation on stress-corrosion cracking and corrosion in light water reactors. In: Cramer SD, Covino BS (eds) ASM Handbook 13C corrosion environments and industries ASM international, pp 386–414 doi:10.1361/asmhba0004147

  29. Bruemmer SM, Simonen EP, Scott PM, Andresen PL, Was GS, Nelson JL (1999) Radiation-induced material changes and susceptibility intergranular failure of light-water-reactor core internals. J Nucl Mater 274:299–314

    Article  Google Scholar 

  30. Chen J, Jung P, Pouchon MA, Rebac T, Hoffelner W (2008) Irradiation creep and precipitation in a ferritic ODS steel under helium implantation. J Nucl Mater 373:22–27

    Article  Google Scholar 

  31. Valizadeh S, Comstock RJ, Dahlbäck M, Zhou G, Wright J, Hallstadius L, Romero J, Ledergerber G, Abolhassani S, Jädernäs D, Mader E (2010) Effects of secondary phase particle dissolution on the in-reactor performance of BWR cladding. In: 16th Zr International symposium chengdu China. http://www.astm.org/COMMIT/B10_Zirc_Presentations/5.3_Valizadeh_-_SPP_BWR.pdf. 9–13 May 2010

  32. Snead LL, Zinkle SJ, Hay JC, Osborne MC (1998) Amorphization of SiC under ion and neutron irradiation nuclear instruments and methods in physics research section B: beam interactions with materials and atoms, Vol 141. Issues 1–4, May 1998: pp 123–132

    Google Scholar 

  33. Barnes RS (1965) Nature (London) 206:1307

    Google Scholar 

  34. Harries DR (1966) J Brit Nucl Energy Soc 5:74

    Google Scholar 

  35. Mansur LK, Grossbeck ML (1988) J Nucl Mater 155–157:130–147

    Google Scholar 

  36. Garner FA (2010) Void swelling and irradiation creep in light water reactor environments. In: Tipping PG (ed) Understanding and mitigating ageing in nuclear power plants. Woodhead, pp 308–356

    Google Scholar 

  37. Russel KC (1971) Acta Metall 19:753

    Google Scholar 

  38. Katz JL, Wiedersich H (1971) Chem Phys 55:1414

    Google Scholar 

  39. Wolfer WG (1984) Advances in void swelling and helium bubble physics. J Nucl Mater 122–123:367–378

    Article  Google Scholar 

  40. Gilbert ER, Kaulitz DC, Holmes JJ, Claudsen TT (1972) In: Proceedings conference on irradiation embrittlement and creep in fuel cladding and core components. British Nuclear Energy Society London 1972, pp 239–251

    Google Scholar 

  41. Garner FA (1994) Chapter 6: Irradiation performance of cladding and structural steels in liquid metal reactors. Materials Science and Technology: A Comprehensive Treatment. 10A VCH Publishers, pp 419–543

    Google Scholar 

  42. Woo CH, Garner FA (1999) J Nucl Mater 271–272:78–83

    Google Scholar 

  43. Hoffelner W, Chen J, Pouchon M (2006) Thermal and irradiation creep of advanced high temperature materials. In: Proceedings HTR2006 3rd international topical meeting on high temperature reactor technology, Johannesburg, South Africa. E 00000038 1–4 Oct 2006

    Google Scholar 

  44. Garner FA, Wolfer WG, Brager HR (1979) A reassessment of the role of stress in development of radiation-induced microstructure. In: Sprague JA, Kramer D (eds) Effects of radiation on structural materials. ASTM STP 683. ASTM pp 160–183

    Google Scholar 

  45. Hesketh R (1962) Philos Mag 7:417–1420

    Google Scholar 

  46. Henager CH, Simonen EP (1985) Critical assessment of low fluence irradiation creep mechanisms. In: Garner FA, Perrin JS (eds) Effects of radiation on materials: twelfth international symposium ASTM STP 870 ASTM, pp 75–98

    Google Scholar 

  47. Chen J et al. (2010) Paul Scherrer Institut NES Scientific Highlights 2010, pp 46–47

    Google Scholar 

  48. Chen J, Jung P, Nazmy M, Hoffelner W (2006) In situ creep under helium implantation of titanium–aluminium alloy. J Nucl Mater 352:36–41

    Article  Google Scholar 

  49. Grossbeck ML, Ehrlich K, Wassilew C (1990) An assessment of tensile, irradiation creep, creep rupture, and fatigue behavior in austenitic stainless steels with emphasis on spectral effects. J Nucl Mater 174(2–3):264–281

    Article  Google Scholar 

  50. Pouchon MA, Chen J, Hoffelner W (2009) He implantation induced microstructure- and hardness-modification of the intermetallic γ-TiAl. Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms 267 8–9 (2009) 1500–1504. (doi:10.1016/j.nimb.2009.01.119)

  51. Robertson JP, Klueh RL, Shiba K, Rowcliffe AF (1997) Radiation hardening and and deformation behaviour of irradiated ferritic-martensitc steels. http://www.ms.ornl.gov/fusionreactor/pdf/dec1997/paper24.pdf. Accessed 3 Nov 2011

  52. Klueh RL, Alexander DJ (1992) In: Stoller RE, Kumar AS, Gelles DS (eds) Effects of radiation on materials: 15th international symposium. ASTM STP 1125 American society for testing and materials Philadelphia, p 1256

    Google Scholar 

  53. Klueh RL, Shiba K, Sokolov MA (2008) Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening. J Nucl Mater 377:427–437

    Article  Google Scholar 

  54. Hoffelner W (2010) Damage assessment in structural metallic materials for advanced nuclear plants. J Mat Sci 45:2247–2257

    Article  Google Scholar 

  55. James LA, Williams JA (1973) The effect of temperature and neutron irradiation upon the fatigue crack propagation behavior of ASTM A533-B steel. J Nucl Mater 47:17–22

    Article  Google Scholar 

  56. James LA (1976) The effect of fast neutron irradiation upon the fatigue crack propagation behavior of two austenitic stainless steels. J Nucl Mater 59:183–191

    Article  Google Scholar 

  57. Magnusson P, Chen J, Hoffelner W (2009) Thermal and irradiation Creep behavior of a Titanium Aluminide in advanced nuclear plant environments. Metall Mater Trans 40A:2837

    Article  Google Scholar 

  58. Bloom EE, Stiegler J (1972) Effect of irradiation on the microstructure and creep-rupture properties of type 316 stainless steel. ORNL http://www.osti.gov/bridge/servlets/purl/4632343-ATLvL5/4632343.pdf. Accessed 3 Nov 2011

  59. Puigh RJ, Hamilton ML (1987) In-Reactor creep rupture behavior of the D19 and 316 alloys. In: Garner FA, Henager CH, Igata N (eds) Influence of radiation on material properties. 13th International symposium Part II ASTM STP 957 ASTM

    Google Scholar 

  60. Wassiliew C, Schneider W, Ehrlich K (1986) Creep and creep-rupture properties of type 1.4970 stainless steel during and after irradiation. Radiat Eff 101:201–219

    Google Scholar 

  61. Scholz R, Mueller R (1996) Irradiation creep-fatigue interaction of type 3 16L stainless steel. J Nucl Mater 233–237:169–172

    Article  Google Scholar 

  62. IAEA (2000) Irradiation damage in graphite due to fast neutrons in fission and fusion systems. IAEA-TECDOC-1154

    Google Scholar 

  63. Ball DR (2008) Graphite for high temperature gas-cooled nuclear eactors. ASME LlC STP-NU-009

    Google Scholar 

  64. Burchell TD (1999) Carbon materials for advanced technologies. ISBN: 0080426832/0-08-042683-2) Elsevier

    Google Scholar 

  65. Katoh Y, Wilson DF, Forsberg CW (2007) Assessment of Silicon Carbide composites for advanced salt-cooled reactors. ORNL/TM-2007/168 Revision 1

    Google Scholar 

  66. Pouchon MA, Rebac T, Chen J, Dai Y, Hoffelner W (2011) Ceramics composites for next generation nuclear reactors. In: Proceedings of GLOBAL 2011 Makuhari, Japan, Dec 11–16, 2011 Paper No. 358363

    Google Scholar 

  67. Ozawa K, Katoh Y, Snead LL, Nozawa T (2010) Effect of neutron irradiation on fracture resistance of advanced SiC/SiC composites. Fusion materuials semiannual progress report. DOE-ER-0313/47

    Google Scholar 

  68. Tractebel Engineering (2004) Thermal ageing of “Western” RPV steels, Athena final conference—Rome— 25–27 Oct 2004

    Google Scholar 

  69. Corwin WR, Nanstad RK, Alexander DJ, Odette GR, Stoller RE, Wang JA (1995) Thermal embrittlement of reactor vessel steels. ORNL. http://www.osti.gov/bridge/servlets/purl/69435-Cx2yKA/webviewable/69435.pdf. Accessed 3 Nov 2011

  70. Odette GR, Lucas GE (2001) Embrittlement of nuclear reactor pressure vessels. JOM 53(7):18–22

    Article  Google Scholar 

  71. Hashmi MF, Wu SJ, Li XH (2005) Neutron irradiation embrittlement modeling in RPV-steels-an overview. In: 18th International conference on structural mechanics in reactor technology (SMiRT 18) Beijing China, 7–12 Aug 2005. SMiRT18-F01-8

    Google Scholar 

  72. Steele LE (ed) (1993) Radiation embrittlement of nuclear reactor pressure vessel steels: an international review (Third Volume)

    Google Scholar 

  73. Miller MK, Sokolov MA, Nanstad RK, Russel KF (2006) J Nucl Mater 351:216–222

    Article  Google Scholar 

  74. Bergner F, Ulbricht A, Viehrig HW (2009) Acceleration of irradiation hardening of low-copper reactor pressure vessel steel observed by means of SANS and tensile testing. Philos Mag Lett 89(12):795–805

    Article  Google Scholar 

  75. Odette GR, Wirth BD (1997) J Nucl Mater 251:157

    Article  Google Scholar 

  76. Odette GR, Lucas GE (1998) Rad Eff Def Sol 144:189

    Article  Google Scholar 

  77. Adamson RB (2000) Effects of neutron irradiation on microstructure and properties of Zircaloy. In: ASTM International in STP 1354, Zirconium in the nuclear industry: twelfth international symposium, 2000, pp 15–31

    Google Scholar 

  78. Holt RA, Gilbert RW (1986) Component dislocations in annealed Zircaloy irradiated at about 570 K. J Nucl Mater 137(1986):185–189

    Article  Google Scholar 

  79. McGrath MA, Yagnik S, Jenssen H (2010) Effects of pre-irradiation on irradiation growth & creep of re-crystallized Zircaloy-4. 16th International symposium on Zirconium in the nuclear industry, 9–13 May 2010, Chengdu, Sichuan Province China. http://www.astm.org/COMMIT/B10_Zirc_Presentations/6.5_ASTM-2010-creep-growth.pdf. Accessed 5 Nov 2011

  80. Herring RA, Northwood DO (1988) Microstructural characterization of neutron irradiated and post-irradiation annealed Zircaloy-2. J Nucl Mater 159:386–396

    Article  Google Scholar 

  81. Garner FA, Porollo SI, Yu V, Konobeev YV, Maksimkin OP (2005) Void swelling of austenitic steels irradiated with neutrons at low temperatures and very low dpa rates. In: Allen TR, King PJ, Nelson L (eds) Proceedings of the 12th international conference on environmental degradation of materials in nuclear power system—Water reactors. TMS The minerals metals & materials society, pp 439–448

    Google Scholar 

  82. Garner FA (2010) Void swelling and irradiation creep in light water (LWR) environments, in Understanding and mitigating ageing in nuclear power plants. In: Ph G, Tipping PG (ed) Woodhead Publication Ltd, pp 308–356

    Google Scholar 

  83. Yoon JH, Yoon EP (2006) Fracture toughness and the master curve for modified 9Cr–1Mo steel. Metals Mater Int 12 6:477–482

    Google Scholar 

  84. Maloy SA, James MR, Toloczko MB (2003) The high temperature tensile properties of ferritic-martensitic and austenitic steels after irradiation in an 800 MeV proton beam. In: Conference proceedings seventh information exchange meeting on actinide and fission product partitioning and transmutation 14–16 Oct 2002, Jeju, Republic of Korea. NEA, pp 669–678

    Google Scholar 

  85. Buongiorno J, MacDonald PE (2003) Supercritical water reactor (SCWR) progress report for the FY-03 generation-IV R&D activities for the development of the SCWR in the U.S. INEEL/EXT-03-01210, 30 Sept 2003

    Google Scholar 

  86. Straalsund JL, Powell RW, Chin BA (1982) Radiation damage in austenitic steels. J Nucl Mater 108–109:299–305

    Article  Google Scholar 

  87. Yvon P, Carré F (2009) Structural materials challenges for advanced reactor systems. J Nucl Mater 385:217–222

    Article  Google Scholar 

  88. Raj B, Ramachandran D, Vijayalakshmi M (2009) Development of cladding materials for sodium-cooled fast reactors in India. Trans Indian Inst Met 62(2):89–94

    Article  Google Scholar 

  89. Latha S, Mathew MD, Rao KBS, Mannan SL (1996) Trans IIM 49, p 587

    Google Scholar 

  90. Cheon JS, Lee CB, Lee BO, Raison JP, Mizuno T, Delage F, Carmack J (2009) Sodium fast reactor evaluation: Core materials. J Nucl Mater 392:324–330

    Google Scholar 

  91. Seran JL, Levy V, Dubuisson P, Gilbon D, Maillard A, Fissolo A, Touron H, Cauvin R, Chalony A, Le Boulbin E (1992) Behaviour under neutron irradiation of the 15-15Ti and EM10 steels used as standard materials of the Phenix fuel subassembly. In: Stoller RE, Kumar AS, Gelles DS (eds) Effects of radiation in materials: 15th international symposium, ASTM STP 1125. ASTM, pp 1209–1233

    Google Scholar 

  92. Toloczko MB, Gelles DS, Garner FA, Kurtz RJ, Abe K (2004) J Nucl Mater 329–333:352

    Article  Google Scholar 

  93. Chen J, Hoffelner W (2009) Irradiation creep of oxide dispersion strengthened (ODS) steels for advanced nuclear applications. J Nucl Mater 392:360–363

    Article  Google Scholar 

  94. Ukai S, Mizuta S, Kaito T, Okada H (2000) In-reactor creep rupture properties of 20 % CW modified 316 stainless steel. J Nucl Mater 278:320–327

    Article  Google Scholar 

  95. Kaito T, Ohtsuka S, Inoue M, Asayama T, Uwaba T, Mizuta S, Ukai S, Furukawa T, Ito C, Kagota E, Kitamura R, Aoyama T, Inoue T (2009) In-pile creep rupture properties of ODS ferritic steel claddings. J Nucl Mater 386–388:294–298

    Article  Google Scholar 

  96. Zhang Z, Liu J, He S, Zhang Z, Yu S (2002) Structural design of ceramic internals of HTR-10. Nucl Eng Des 218:123–136

    Article  Google Scholar 

  97. Greene SR, Holcomb DE, Gehin JC, Carbajo JJ, Cisneros AT, Corwin WR, Ilas D, Wilson DF, Varma VK, Bradley EC, Yoder GL (2010) SMAHTR—A concept for a small, modular advanced high temperature reactor. Proceedings of HTR 2010 Prague Czech Republic October 18–20 2010. Paper 205

    Google Scholar 

  98. DOE (2010) Fusion materials semi-annual progress report for the period ending December 31, 2009. DOE-ER-0313/47, Distribution, Categories, UC-423, -424, published February (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hoffelner .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London Limited

About this chapter

Cite this chapter

Hoffelner, W. (2013). Irradiation Damage . In: Materials for Nuclear Plants. Springer, London. https://doi.org/10.1007/978-1-4471-2915-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2915-8_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2914-1

  • Online ISBN: 978-1-4471-2915-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics