Skip to main content

Materials

  • Chapter
  • First Online:
  • 4021 Accesses

Abstract

Structural materials must be able to operate under demanding exposure conditions. For advanced nuclear plants these are temperature, radiation and corrosive media. In principle there is no specific class of nuclear materials and the materials under discussion are the same as the ones used also for other applications. In this chapter the classification of the materials will be made according to their resistance to elevated and high temperatures. Specific nuclear aspects will only be briefly considered here. Nuclear and corrosion aspects are covered in Chaps. 5 and 6. Starting with carbon steels and low alloy steels ferritic-martensitic steels, austenites and superalloys will be introduced. Intermetallics and nano-featured alloys with different matrices are considered as candidates for advanced applications. For very high temperatures and for some core internals and linings also ceramics are introduced.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Guzonas D (2009) SCWR materials and chemistry status of ongoing research. In: GIF symposium—Paris (France), 9–10 Sept 2009, pp 163–171

    Google Scholar 

  2. Buckthorpe D, Heikinheimo L, Fazio C, Hoffelner W, van der Laan JG, Nilsson KF, Schuster F (2012) Scientific assessment in support of the materials roadmap enabling low carbon energy technologies-technology nuclear energy. http://setis.ec.europa.eu/activities/materialsroadmap/Scientific_Assessment_NuclearEnergy. Accessed 3 July 2012

  3. Nabarro FRN, Hirth JP (eds) (2009) Dislocations in Solids, Series, vol 16. Elsevier, Amsterdam

    Google Scholar 

  4. Haasen P, Mordike BL (1996) Physical metallurgy, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  5. Hull D, Bacon DJ (2001) Introduction to dislocations, 4th edn. Butterworth and Heinemann, London

    Google Scholar 

  6. Frank-Read source, http://en.wikipedia.org/wiki/Frank-Read_Source. Accessed 15 Sept 2011

  7. Seeger A (1957) Dislocations and mechanical properties of crystals. Wiley, New York

    Google Scholar 

  8. Schäublin R, Yao Z, Baluc N, Victoria M (2005) Irradiation-induced stacking fault tetrahedra in fcc metals. Phil Mag 85:769–777

    Article  Google Scholar 

  9. Kadoyoshi T, Kaburaki H, Shimizu F, Kimizuka H, Jitsukawa S, Lie J (2007) Molecular dynamics study on the formation of stacking fault tetrahedra and unfaulting of Frank loops in fcc metals. Acta Mater 55:3073–3080

    Article  Google Scholar 

  10. Smigelskas AD, Kirkendall EO (1947) Zinc diffusion in alpha brass. Trans AIME 171:130–142

    Google Scholar 

  11. ASM Handbook of Alloy Phase Diagrams (1992) ASM International, Cleveland ISBN: 978-0-87170-381-1

    Google Scholar 

  12. University of Cambridge: DoITPoMS teaching and learning packages http://www.doitpoms.ac.uk//tlplib/phase-diagrams/intro.php. Accessed 8 Oct 2011

  13. Porter DA, Easterling K (1992) Phase transformations in metals and alloys, 2nd edn. Routledge, London

    Google Scholar 

  14. Smallman RE (1985) Modern physical metallurgy. Butterworth, London

    Google Scholar 

  15. John V (1974) Understanding phase diagrams. Macmillan, New York

    Google Scholar 

  16. Allen TR, Busby JT, Klueh RL, Maloy SA, Toloczko MB (2008) Cladding and duct materials for advanced nuclear recycle reactors. J Mater 60(1):15–25

    Google Scholar 

  17. Strassland JL, Powell RW, Chin BA (1982) An overview of neutron irradiation effects in LMFBR materials. J Nucl Mater 108–109:299

    Google Scholar 

  18. Zinkle S (2008) In: Structural materials for innovative nuclear systems (SMINS) Workshop proceedings Karlsruhe, Germany, 4–6 June 2007 SMINS NEA no. 6260

    Google Scholar 

  19. Iron-Carbon Phase Diagram. http://www.calphad.com/iron-carbon.html

  20. Wikipedia http://en.wikipedia.org/wiki/Pearlite. Accessed 8 Oct 2011

  21. Llewellyn DT, Hudd RC (1998) Steels: metallurgy and applications. Butterworth-Heinemann, London

    Google Scholar 

  22. Schaeffler AL (1949) Constitution diagram for stainless steel weld metal. In: Metal progress. American Society for Metals Cleveland Ohio, vol 56, pp 680–680B. ISSN 0026-0665

    Google Scholar 

  23. The Schaeffler and Delong diagrams for predicting ferrite levels in austenitic stainless steel welds. http://www.bssa.org.uk/topics.php?article=121. Accessed 8 Oct 2011

  24. Transformation diagrams (CCT and TTT).  http://www.matter.org.uk/steelmatter/metallurgy/7_1_2.html. Accessed 8 Oct 2011

  25. Reference manual on the IAEA JRQ correlation monitor steel for irradiation damage studies (2001) IAEA-TECDOC-1230

    Google Scholar 

  26. http://www.spaceflight.esa.int/impress/text/education/Glossary/Glossary_P.html. Accessed 8 Oct 2011

  27. http://www.msm.cam.ac.uk/phase-trans/abstracts/chang.html. Accessed 8 Oct 2011

  28. http://www.threeplanes.net/martensite.html. Accessed 8 Oct 2011

  29. Buckthorpe D (2002) https://odin.jrc.ec.europa.eu/htr-tn/HTR-Eurocourse-2002/Buckthorpe_582.pdf. Accessed 8 Oct 2011

  30. Klueh RL (2004) Elevated-temperature ferritic and martensitic steels and their application to future nuclear reactors. ORNL/TM-2004/176

    Google Scholar 

  31. Klueh RL, Harries DR (2001) High-chromium ferritic and martensitic steels for nuclear applications ASTM STP MONO3

    Google Scholar 

  32. Masuyama F (1999) In: Viswanathan R, Nutting J (eds) Advanced Heat Resistant Steel for Power Generation. The Institute of Materials, London, pp 33–48

    Google Scholar 

  33. Viswanathan R, Bakker W (2001) Materials for ultrasupercritical coal power plants—boiler materials. J Mater Eng Perf 10:81–95

    Article  Google Scholar 

  34. Viswanathan R, Bakker W (2001) Materials for ultrasupercritical coal power plants, Part 2. J Mater Eng Perf 10:96–101

    Google Scholar 

  35. Ryu WS, Kim SH (2010) Thermal treatment improving creep properties of nitrogen-added Mod.9Cr-1Mo steels. Trans Indian Inst Met 63(2–3):39–43

    Google Scholar 

  36. Lindau R, Möslang A, Rieth M, Klimiankou M, Materna-Morris E, Alamo A, Tavassoli AAF, Cayron C, Lancha AM, Fernandez P, Baluc N, Schäublin R, Diegele E, Filacchioni G, Rensman JW, v.d. Schaaf B, Lucon E, Dietz W (2005) Present development status of EUROFER and ODS-EUROFER for application in blanket concepts. Fusion Eng Des 75–79:989–996

    Google Scholar 

  37. Ehrlich K, Cierjacks SW, Kelzenberg S, Möslang A (1996) The development of structural materials for reduced long-term activation. ASTM Special Technical Publications, STP 1270:1109–1122

    Google Scholar 

  38. van der Schaaf B, Tavassoli F, Fazio C, Rigal E, Diegele E, Lindau R, LeMarois G (2003) The development of EUROFER reduced activation steel. Fusion Eng Des 69(1–4):197–203

    Article  Google Scholar 

  39. Klueh RL, Maziasz PJ, Alexander DJ (1996) Bainitic chromium-tungsten steels with 3 Pct chromium. Metall Mater Trans A 28(2):335–345. doi:10.1007/s11661-997-0136-0

    Article  Google Scholar 

  40. Scott X, Mao SX, Vinod K, Sikka VK (2006) Fracture toughness and strength in a new class of bainitic chromium-tungsten steels. Oak Ridge National Laboratory. ORNL/TM-2006/44

    Google Scholar 

  41. Stainless steels—introduction to the grades and families http://www.azom.com/article.aspx?ArticleID=470. Accessed 8 Oct 2011

  42. Raj B, Mannan SL, Vasudeva PR, Rao K, Mathew MD (2002) Development of fuels and structural materials for fast breeder reactors. Sadhana 27(5):527–558

    Article  Google Scholar 

  43. Latha S, Mathew MD, Bhanu Sankara Rao K, Mannan SL (2001) Creep properties of 15Cr-15Ni austenitic stainless steel and the influence of titanium. In: Parker J (ed) Creep and fracture of engineering materials and structures. The Institute of Materials, London, pp 507–513

    Google Scholar 

  44. Microstructures in Austenitic Stainless Steels, key-to-metals, Article, http://www.keytometals.com/page.aspx?ID=CheckArticle&site=kts&NM=268. Accessed 13 Oct 2011

  45. Guy K, Cutler EP, West DRF (1982) Epsilon and alpha’martensite formation and reversion in austenitic stainless steels. J de Physique Colloque C4 supplement no 12 43 C4-575-580

    Google Scholar 

  46. Kalkhof D, Grosse M, Niffenegger M, Leber HJ (2004) Monitoring fatigue degradation in austenitic stainless steels. Fatigue Fract Eng Mater Struct 27(7):595–607

    Article  Google Scholar 

  47. Fahr D (1973) Analysis of stress-strain behaviour of type 316 stainless steel. ORNL TM 4292

    Google Scholar 

  48. Wang J, Zou H, Li C, Peng Y, Qiu S, Shen B (2006) The microstructure evolution of type 17- 4PH stainless steel during long-term aging at 350 °C. Nucl Eng Des 236:2531–2536

    Google Scholar 

  49. Viswanathan UK, Banerjee S, Krishnan U (1988) Effects of aging on the microstructure of 17-4 PH stainless steel. Mater Sci Eng A 104:181–189

    Article  Google Scholar 

  50. Superalloys: a primer and history, TMS (2000) http://www.tms.org/meetings/specialty/superalloys2000/superalloyshistory.html. Accessed 13 Oct 2011

  51. Nickel-based superalloys: part one, article http://www.keytometals.com/page.aspx?ID=CheckArticle&site=ktn&LN=FR&NM=234. Accessed 8 Oct 2011

  52. Sims CT, Stoloff NS, Hagel WC (1987) Superalloys II, 1st edn. ISBN-10: 0-471-01147-9 ISBN-13:978-0-471-01147-7. Wiley, New York

    Google Scholar 

  53. Donachie MJ, Donachie SJ (2002) Superalloys a technical guide, ASM International, Cleveland

    Google Scholar 

  54. Special metals, the story of the INCOLOY alloys series from 800 through 800H 800HT. http://www.specialmetals.com/documents/Incoloy%20alloys%20800H%20800HT.pdf. Accessed 8 Oct 2011

  55. Special metals, data sheet, http://www.specialmetals.com/documents/Inconel%20alloy%20600%20%28Sept%202008%29.pdf. Accessed 8 Oct 2011

  56. Special metals datasheet, http://www.specialmetals.com/documents/Inconel%20alloy%20617.pdf. Accessed 8 Oct 2011

  57. Wright JK, Carroll LJ, Cabet CJ, Lillo T, Benz JK, Simpson JA, Lloyd WR, Chapman JA, Wright RN (2010) Characterization of elevated temperature properties of heat exchanger and steam generator alloys. In: Proceedings of HTR 2010 Prague Czech Republic, p 31, 18–20 Oct 2010

    Google Scholar 

  58. Ren W, Swindeman R (2009) A review on current status of alloys 617 and 230 for Gen IV nuclear reactor internals and heat exchangers. Trans ASME 131:044002–044017

    Google Scholar 

  59. Wu Q, Song H, Swindeman RW, Shingledecker JP, Vijay K, Vasudevan VK (2008) Microstructure of long-term aged IN617 Ni-base superalloy. Met Mat Trans A 39A:2569

    Google Scholar 

  60. HA-230 Datasheet Haynes http://www.haynesintl.com/230HaynesAlloy.htm. Accessed 18 Oct 2011

  61. Kondo T development and testing of alloys for primary circout structures of a VHTR, IAEA knowledge base. http://www.iaea.org/inisnkm/nkm/aws/htgr/fulltext/iwggcr4_3.pdf, visited July 2011

  62. Hastelloy N (2002) Datasheet, Haynes International, Inc. H-2052B http://www.haynesintl.com/pdf/h2052.pdf. Accessed 19 Oct 2011

  63. Murty KL, Charit I (2008) Structural materials for Gen-IV nuclear reactors: challenges and opportunities. J Nucl Mater 383:189–195

    Article  Google Scholar 

  64. Knabl W, Schulmeyer W, Stickler R (2010) Plansee refractory metals: properties, applications and industrial fabrication, workshop: Innovative Materials Immune To Radiation (IMIR). http://www.engconfintl.org/10akpapers.html. Accessed 19 Oct 2010

  65. Romero J, Quinta da Fonseca J, Preuss M, Dahlbäck M, Hallstadius L, Comstock R (2010) Texture evolution of zircaloy-2 during beta quenching: effect of process variables ASTM, Technical Committees/Committee B10 on Reactive and Refractory Metals and Alloys. http://www.astm.org/COMMIT/B10_Zirc_Presentations/index.html. Accessed 19 Oct 2011

  66. Hishinuma A, Fukai K, Sawai T, Nakata K (1996) Ductilization of TiAl intermetallic alloys by neutron-irradiation. Intermetallics 4(3):179–184. doi:10.1016/0966-9795(95)00030-5

    Article  Google Scholar 

  67. Hishinuma A (1996) Radiation damage of TiAl intermetallic alloys. J Nucl Mater 239:267–272. doi:10.1016/S0022-3115(96)00429-1

    Article  Google Scholar 

  68. Magnusson P, Chen J, Hoffelner W (2009) Thermal and irradiation creep behavior of a titanium aluminide in advanced nuclear plant environments. Met Mat Trans A 40A:2837–2842. doi:10.1007/s11661-009-0047-3

    Article  Google Scholar 

  69. Magnusson P (2011) Thermal and irradiation creep of TiAl. Doctoral Thesis. EPFL Lausanne and Paul Scherrer Institute Switzerland

    Google Scholar 

  70. Kim YW, Kim SL, Woodward C (2010) Gamma (TiAl) alloys: breaking processing and grain size barriers. IMIR-1 2010 0822-0826 Vail CO

    Google Scholar 

  71. Lapin J, Nazmy M (2004) Microstructure and creep properties of a cast intermetallic Ti-46Al-2 W-0.5Si alloy for gas turbine applications. Mater Sci Eng A 380:298–307

    Article  Google Scholar 

  72. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29

    Article  Google Scholar 

  73. Weertman JR (2007) Mechanical behavior of nanocrystalline metals. In: Koch CC (ed) Nanostructured materials: processing properties and applications, 2nd edn. William Andrew Inc, New York, pp 537–564

    Google Scholar 

  74. Gell M (1995) Application opportunities for nanostructured materials and coatings. Mater Sci Eng A204:246–251

    Google Scholar 

  75. Koch CC (ed) Nanostructured materials: processing properties and applications, 2nd edn. William Andrew Inc, New York, pp 91–118

    Google Scholar 

  76. ODS (2010) Materials workshop. In: Conference Proceedings Qualcomm Conference Ctr Jacobs Hall UCSD La Jolla CA Nov 17–18th http://structures.ucsd.edu/ODS2010/. Accessed 19 Oct 2011

  77. Jones A (2010) Historical perspective: ods alloy development. See [76] Enduser Perspectives

    Google Scholar 

  78. Benn RC, Kang SK (1984) In: Gell M et al. (eds) Proceedings Conference Superalloys. TMS-AIME, pp 319

    Google Scholar 

  79. Ewing BA, Jain SK (1988) Development of inconel alloy MA 6000 turbine blades for advanced gas turbine engine designs. In: Duhl DN, Maurer G, Antolovich S, Lund C, Reichman S (eds) Superalloys 1988 TMS, pp 131–140

    Google Scholar 

  80. Starr F (2010) The ODS alloy high temperature heat exchanger and associated work. See [76] Enduser Perspectives

    Google Scholar 

  81. Oksiuta Z, Olier P, de Carlan Y, Baluc N (2009) Development and characterisation of a new ODS ferritic steel for fusion reactor applications. J Nucl Mater 393(1):114–119

    Article  Google Scholar 

  82. Kimura A, Ukai S, Fujiwara M (2004) R&D of oxide dispersion strengthening steels for high burn-up fuel claddings. In: Proceedings of International Congress Advances in Nuclear Power Plants (ICAPP-2004) ISBN 0-89448-680-2, pp 2070–2076

    Google Scholar 

  83. Kimura A, Cho HS, Toda N, Kasada R, Yutani K, Kishimoto H, Iwata N, Ukai S, Fujiwara M (2008) High Cr-ODS steels R&D for high burn-up fuel claddings. In: Structural materials for innovative nuclear systems (SMINS) Workshop Proceedings Karlsruhe. Germany 4–6 June 2007 NEA No 6260 OECD, pp 103–114

    Google Scholar 

  84. Korb G (2008) Research Center Seibersdorf (Austria,) EU FW6 project EXTREMAT

    Google Scholar 

  85. Arzt E (1991) Creep of dispersion strengthened materials: a critical assessment. Res Mechanica 31:399–453

    Google Scholar 

  86. Blum W, Reppich B (1985) Creep of particle-strengthened alloys. In: Wilshire B, Evans RW (eds) Creep behavior of crystalline solids. Pineridge Press Swansea UK, pp 83–136

    Google Scholar 

  87. Rösler J (2003) Particle strengthened alloys for high temperature applications: strengthening mechanisms and fundamentals of design. J Mater Prod Technol 18(1–3):70–90

    Google Scholar 

  88. Kimura A, Kasada R, Iwata N, Kishimoto H, Zhang CH, Isselin J, Dou P, Lee JH, Muthukumar N, Okuda T, Inoue M, Ukai S, Ohnuki S, Fujisawa T, Abe TF (2010) Super ODS steels R&D for fuel cladding of Gen-IV systems, Innovative Materials Immune to Radiation (IMIR)-1, 22–26 Aug 2010 The Lodge at Vail CO

    Google Scholar 

  89. Miller KM, Hoelzer DT, Kenik EA, Russell KF (2004) Nanometer scale precipitation in ferritic MA/ODS alloy MA957. J Nucl Mater 329–333:338–341

    Article  Google Scholar 

  90. Ukai S, Nishida T, Okada H, Okuda T, Fujiwara M, Asabe K (1997) Development of oxide dispersion strengthened ferritic steels for fbr core application (1) improvement of mechanical properties by recrystallization processing. J Nucl Sci Technol 34(3):256

    Article  Google Scholar 

  91. Ukai S, Nishida T, Okuda T, Yoshitake T (1998) Development of oxide dispersion strengthened ferritic steels for fbr core application (II) morphology improvement by martensite transformation. J Nucl Sci Technol 35(4):294

    Article  Google Scholar 

  92. Miller MK, Hoelzer DT, Babu SS, Kenik EA, Russell KF (2003) High temperature microstructural stability of a MA/ODS ferritic alloys. In: Fuchs GE, Wahl JB (eds) High temperature alloys: processing for properties. The Minerals Metals and Materials Society

    Google Scholar 

  93. Hoelzer DT, Bentley J, Miller MK, Sokolov MK, Byun TS, Li M (2010) Development of high-strength ODS steels for nuclear energy applications. In: ODS 2010 materials workshop qualcomm conference center Jacobs Hall University of California, San Diego, 17–18 Nov 2010

    Google Scholar 

  94. Hoffelner W (2010) Development and application of nano-structured materials in nuclear power plants. In: Tipping PG (ed) Understanding and mitigating ageing in nuclear power plants. Woodhead, pp 581–605

    Google Scholar 

  95. Klueh RL, Hashimoto N, Maziasz PJ (2005) Development of new ferritic/martensitic steels for fusion applications. In: Fusion engineering 2005 twenty-first IEEE/NPS symposium on fusion materials, pp 1–4. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4018942&isnumber=401887. Accessed 20 Oct 2011

  96. Alamo A, Lambard V, Averty X, Mathon MH (2004) Assessment of ODS-14%Cr ferritic alloy for high temperature applications. J Nucl Mater Part 1:333–337

    Article  Google Scholar 

  97. Klueh RL, Shingledecker JP, Swindeman RW, Hoelzer DT (2005) Oxide dispersion-strengthened steels: a comparison of some commercial and experimental alloys. J Nucl Mater 341:103–114

    Article  Google Scholar 

  98. Byun TS, Hoelzer DT, Kim JH (2010) High Temperature Fracture Characteristics of Nanostructured Ferritic Alloy. In: Innovate materials immune to radiation 22–26 Aug 2010, Vail CO USA IMIR-1

    Google Scholar 

  99. Schneibel JH, Liu CT, Miller MK, Mills MJ, Sarosi P, Heilmaier M, Sturm D (2009) Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength. Scripta Mater 61:793–796

    Article  Google Scholar 

  100. Benn RC, McColvin GM (1988) The development of ODS superalloys for industrial gas turbines. In: Reichman S, Duhl DN, Maurer G, Antolovich S, Lund C (eds) Superalloys 1988, The metallurgical society, pp 73

    Google Scholar 

  101. Donachie MJ, Donachie SJ (2002) Superalloys: a technical guide, 2nd edn, ASM, Cleveland

    Google Scholar 

  102. James A (2010) The challenge for ODS materials: an industrial gas turbine perspective, see [76]

    Google Scholar 

  103. Kang B, Ogawa K, Ma L, Alvin MA, Wu N, Smith G (2009) Materials and component development for advanced turbine systems—ODS alloy development. In: 23rd annual conference on fossil energy materials Pittsburgh, 12–14 May 2009

    Google Scholar 

  104. Hurley JP (2010) ODS Alloys in coal-fired heat exchangers—prototypes and testing, 2010 ODS Alloy workshop San Diego California, 17–18 Nov 2010. See also [76]

    Google Scholar 

  105. Kad BK, Wright I, Smith G, Judkins R (2003) Optimization of oxide dispersion strengthened alloy tubes. http://www.ms.ornl.gov/fossil/pdf/Subcontract/UCSD-Topical-2003.pdf. Accessed 20 Oct 2011

  106. Chevalier S, Juzon P, Borchardt G, Galerie A, Przybylski K, Larpin JP (2010) High-temperature oxidation of Fe3Al and Fe3Al–Zr intermetallics. Oxid Met 73:43–64. doi:10.1007/s11085-009-9168-8

    Article  Google Scholar 

  107. Poerschke DL (2009) Mechanical properties of oxide dispersion strebgthened molybdenum alloys. Department of Materials Science and Engineering Case Western Reserve University

    Google Scholar 

  108. Mueller AJ, Shields JA, Buckman RW (1999) The effect of thermo-mechanical processing on the mechanical properties of molybdenum—2 vol% Lanthana Bettis Atomic Power Lab DE-AC11-98PN38206

    Google Scholar 

  109. Schneibel JH, Kad BK Nanoprecipitates in steels. http://www.pdfbe.com/8e/8e628cc0c308f5f0-download.pdf. Accessed 20 Oct 2011

  110. Schneibel JH, Shim S (2008) Nano-scale oxide dispersoids by internal oxidation of Fe–Ti–Y intermetallics. Mater Sci Eng A 488:134–138

    Article  Google Scholar 

  111. Rieken JR, Anderson IE, Kramer MJ, Wu YQ, Anderegg JW, Kracher A, Besser MF (2008) Atomized precursor alloy powder for oxide dispersion-strengthened ferritic stainless steel. In: Advances in powder metallurgy and particulate materials. MPIF, Washington

    Google Scholar 

  112. Jönsson B, Berglund R, Magnusson J, Henning P, Hättestrand M (2004) High temperature properties of a new powder metallurgical FeCrAl alloy. Mater Sci Forum 461–464:455–462

    Article  Google Scholar 

  113. Srinivasan D, Corderman R, Subramanian PR (2006) Strengthening mechanisms (via hardness analysis) in nanocrystalline NiCr with nanoscaled Y2O3 and Al2O3 dispersoids. Mater Sci Eng A 416:211

    Google Scholar 

  114. Chen S, Qu SJ, Han JC (2009) Microstructure and mechanical properties of Ni-based superalloy foil with nanocrystalline surface layer produced by EB-PVD. J Alloy Compd 484:626

    Google Scholar 

  115. Lin X, He X, Sun Y, Li Y, Guangping Song G, Xinyan Li X, Jiazhen Zhang J (2010) Morphology and texture evolution of FeCrAlTi–Y2O3 foil fabricated by EBPVD. Surf Coat Technol 205:76–84

    Article  Google Scholar 

  116. Klueh RL, Hashimoto N, Maziasz PJ (2007) New nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment. J Nucl Mater 367–370(1): 48–53

    Google Scholar 

  117. Klueh RL, Hashimoto N, Maziasz PJ (2005) Development of new nano-particle-strengthened martensitic steels. Scripta Mater 53:275–280

    Article  Google Scholar 

  118. Klueh RL (2010) Toward new high-temperature ferritic/martensitic steels. IMIR Workshop Vail CO, 26 Aug 2010

    Google Scholar 

  119. Zhu Y, Valiev RZ, Langdon TG, Tsuji N, Lu K (2010) Processing of nanostructured metals and alloys via plastic deformation. MRS Bulletin vol 35:977–981

    Article  Google Scholar 

  120. Misra A, Thilly L (2010) Structural materials at extremes. MRS Bull 35:965–972

    Google Scholar 

  121. Hoffelner W, Froideval A, Pouchon M, Chen J, Samaras M (2008) Synchrotron X-Rays for microstructural investigations of advanced reactor materials. Met Mat Trans A 39:214

    Google Scholar 

  122. Chen J, Hoffelner W, Rebac T (2010) Paul Scherrer Institut, Switzerland. Unpublished

    Google Scholar 

  123. Huang CX, Yang G, Deng B, Wu SD, Li SX, Zhang ZF (2007) Formation mechanism of nanostructures in austenitic stainless steel during equal channel angular pressing. Phil Mag 87(31):4949–4971

    Article  Google Scholar 

  124. Y. Yang Y, Ch. Sun C, X. Zhang X, A. Todd (2011) Effect of grain size and grain boundaries on the proton irradiation response of nanostructured austenitic model alloy. TMS Annual Meeting. Microstructural Processes in Irradiated Materials TMS

    Google Scholar 

  125. Froideval A, Chen J, Pouchon M, Hoffelner W (2011) Paul Scherrer Institut, Switzerland. Unpublished

    Google Scholar 

  126. Demkowicz MJ, Bellon P, Wirth BD (2010) Atomic-scale design of radiation-tolerant nanocomposites. MRS Bull 35:992–998

    Article  Google Scholar 

  127. Misray A, Hoagland RG, Kung H (2004) Thermal stability of self-supported nanolayered Cu/Nb films. Phil Mag 84(10):1021–1028

    Article  Google Scholar 

  128. Demkowicz MJ, Hoagland RG, Hirth JP (2008) Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys Rev Lett 100:136102

    Article  Google Scholar 

  129. Ball DR (2008) Graphite for high temperature gas-cooled nuclear reactors. ASME LlC STP-NU-009

    Google Scholar 

  130. Turk DL (2000) Graphite, processing artificial Kirk-Othmer encyclopedia of chemical technology. Wiley, New York, Published Online: 4 Dec 2000

    Google Scholar 

  131. Silicon Carbide. Wikipedia http://en.wikipedia.org/wiki/Silicon_carbide. Accessed 8 Oct 2011

  132. Properties of Silicon Carbide (SiC). Ioffe Institute. http://www.ioffe.ru/SVA/NSM/Semicond/SiC/. Accessed 18 Oct 2011

  133. Szlufarska I, Nakano A, Vashishta P (2005) A crossover in the mechanical response of nanocrystalline ceramics. Science 309:911

    Article  Google Scholar 

  134. MT Aerospace, http://de.wikipedia.org/wiki/Keramischer_Faserverbundwerkstoff

  135. Katoh Y, Cozzi A (eds) (2010) Ceramics in nuclear applications. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hoffelner .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London Limited

About this chapter

Cite this chapter

Hoffelner, W. (2013). Materials. In: Materials for Nuclear Plants. Springer, London. https://doi.org/10.1007/978-1-4471-2915-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2915-8_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2914-1

  • Online ISBN: 978-1-4471-2915-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics