Skip to main content
  • 1418 Accesses

Abstract

The total amount of blood flow circulating through the heart, lungs, and all the tissues of the body represents the cardiac output. Cardiac output responses to exercise at sea level depend mainly on the type of exercise performed, metabolic demand, and fitness level. Modes of exercise include dynamic aerobic, dynamic anaerobic, and isometric or resistive bout. Cardiac output is affected by the phase of respiration with intrathoracic pressure changes influencing diastolic heart filling and therefore cardiac output. Breathing in reduces intrathoracic pressure, filling the heart and increasing cardiac output, while breathing out increases intrathoracic pressure and reduces heart filling and cardiac output. This respiratory response is called stroke volume variation and can be used as an indicator of cardiovascular health and disease. These respiratory changes are important, particularly during mechanical ventilation, and cardiac output should therefore be measured at a defined phase of the respiratory cycle, usually end-expiration [1]. Most individual tissues determine their own flow in proportion to their metabolic rate. The skin is a notable exception where the priority is thermal rather than metabolic. Brain, heart, skeletal muscle, and the splanchnic area all vary their blood flows according to local tissue metabolic rate. Summation of peripheral blood flows constitutes venous return and hence cardiac output [2]. The significant increase in VO2 during dynamic aerobic exercise forces the heart to increase cardiac output (Q) and to dilate the arterioles (autoregulation). During dynamic aerobic exercise such as walking, running, swimming and cycling, oxygen demand by the working muscles increases proportionally to intensity (Fig. 3.1) and by diverting blood from the liver, kidneys, and digestive tract. During submaximal dynamic aerobic exercise at the same absolute load, cardiac output will be similar in trained and untrained subjects. However, the way to achieve that cardiac output differs significantly between these two subjects. In untrained subjects, the increase in cardiac output is achieved mainly by a significant increase in heart rate and a moderate increase in stroke volume (SV), while in trained subject, the increase is due to a significant increase in stroke volume and heart rate (HR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guyton AC, John E. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier Inc; 2006.

    Google Scholar 

  2. Wolff CB. Normal cardiac output, oxygen delivery and oxygen extraction. Adv Exp Med Biol. 2007;599: 169–82.

    Article  PubMed  Google Scholar 

  3. Sagiv M, Ben-Sira D, Sagiv A, Werber G, Rotstein A. Left ventricular responses during prolonged treadmill walking with heavy load carriage. Med Sci Sports Exerc. 1994;26:285–8.

    PubMed  CAS  Google Scholar 

  4. Wilson LB, Andrew D, Craig AD. Activation of spinobulbar lamina I neurons by static muscle contraction. J Neurophysiol. 2002;87:1641–5.

    PubMed  CAS  Google Scholar 

  5. Wilmore JH, Costill DL. Physiology of sport and exercise. 3rd ed. Champaign: Human Kinetics; 2005.

    Google Scholar 

  6. O’Leary DS. Heart rate control during exercise by baroreceptors and skeletal muscle afferents. Med Sci Sports Exerc. 1996;28:210–7.

    PubMed  Google Scholar 

  7. Rowland TW, Garrard M, Marwood S, Guerra ME, Roche D, Unnithan VB. Myocardial performance during progressive exercise in athletic adolescent males. Med Sci Sports Exerc. 2009;41:1721–8.

    Article  PubMed  Google Scholar 

  8. Obert P, Mandigouts S, Nottin S, Vinet A, N’Guyen LD, Lecoq AM. Cardiovascular responses to endurance training in children: effect of gender. Eur J Clin Invest. 2003;33:199–208.

    Article  PubMed  CAS  Google Scholar 

  9. Nottin S, Vinet A, Stecken F, Nguyen LD, Ounissi F, Lecoq AM, Obert P. Central and peripheral cardiovascular adaptations during a maximal cycle exercise in boys and men. Med Sci Sports Exerc. 2002;34: 456–63.

    Article  PubMed  Google Scholar 

  10. Zhou B, Conlee RK, Jensen R, Fellingham GW, George JD, Fisher AG. Stroke volume does not plateau during graded exercise in elite male distance runners. Med Sci Sports Exerc. 2001;33:1849–54.

    Article  PubMed  CAS  Google Scholar 

  11. Warburton DE, Haykowsky MJ, Quinney HA, Blackmore D, Teo KK, Humen DP. Myocardial response to incremental exercise in endurance-trained athletes: influence of heart rate, contractility and the Frank-Starling effect. Exp Physiol. 2002;87:613–22.

    Article  PubMed  Google Scholar 

  12. Warburton DE, Gledhill N. Counterpoint: stroke volume does not decline during exercise at maximal effort in healthy individuals. J Physiol Appl. 2008;104:274–6.

    Google Scholar 

  13. Kanstrup IL, Marving J, Gagsboll N, Lonborg-Jensen H, Hoilund-Carlsen PF. Left ventricle haemodynamics and vaso-active hormones during graded supine exercise in healthy male subjects. Eur J Appl Physiol. 1995;72:86–94.

    Article  CAS  Google Scholar 

  14. Sampath S, Derbyshire JA, Ledesma-Carbayo MJ, McVeigh ER. Imaging left ventricular tissue mechanics and hemodynamics during supine bicycle exercise using a combined tagging and phase-contrast MRI pulse sequence. Magn Reson Med. 2011;65:51–9.

    Article  PubMed  Google Scholar 

  15. Sandercock GR, Hardy-Shepherd D, Nunan D, Brodie D. The relationships between self-assessed habitual physical activity and non-invasive measures of cardiac autonomic modulation in young healthy volunteers. J Sports Sci. 2008;26:1171–7.

    Article  PubMed  Google Scholar 

  16. Camarda SR, Tebexreni AS, Páfaro CN, Sasai FB, Tambeiro VL, Juliano Y, Barros Neto TL. Comparison of maximal heart rate using the prediction equations proposed by Karvonen and Tanaka. Arq Bras Cardiol. 2008;91:311–4.

    Article  PubMed  Google Scholar 

  17. O’Connell MN, Falchier A, McGinnis T, Schroeder CE, Lakatos P. Dual mechanism of neuronal ensemble inhibition in primary auditory cortex. Neuron. 2011;69:805–17.

    Article  PubMed  Google Scholar 

  18. Portier H, Louisy F, Laude D, Berthelot M, Guezennec CY. Intense endurance training on heart rate and blood pressure variability in runners. Med Sci Sports Exerc. 2001;33:1120–5.

    PubMed  CAS  Google Scholar 

  19. Raven PB, Fadel PJ, Ogoh S. Arterial baroreflex resetting during exercise: a current perspective. Exp Physiol. 2006;91:37–49.

    Article  PubMed  Google Scholar 

  20. Freeman JV, Dewey FE, Hadley DM, Myers J, Froelicher VF. Autonomic nervous system interaction with the cardiovascular system during exercise. Prog Cardiovasc Dis. 2006;48:342–62.

    Article  PubMed  Google Scholar 

  21. Pichon AP, de Bisschop C, Roulaud M, Denjean A, Papelier Y. Spectral analysis of heart rate variability during exercise in trained subjects. Med Sci Sports Exerc. 2004;36:1702–8.

    Article  PubMed  Google Scholar 

  22. Zuckerman-Levin N, Zinder O, Greenberg A, Levin M, Jacob G, Hochberg Z. Physiological and catecholamine response to sympathetic stimulation in turner syndrome. Clin Endocrinol (Oxf). 2006;64: 410–5.

    Article  CAS  Google Scholar 

  23. Zanesco A, Antunes E. Effects of exercise training on the cardiovascular system: pharmacological approaches. Pharmacol Ther. 2007;114:307–17.

    Article  PubMed  CAS  Google Scholar 

  24. Whipp BJ, Higgenbotham MB, Cobb FC. Estimating exercise stroke volume from asymptotic oxygen pulse in humans. J Appl Physiol. 1996;81:2674–9.

    PubMed  CAS  Google Scholar 

  25. Bhambhani Y, Norris S, Bell G. Prediction of stroke volume from oxygen pulse measurements in untrained and trained men. Can J Appl Physiol. 1994;19: 49–59.

    Article  PubMed  CAS  Google Scholar 

  26. Mortensen SP, Dawson EA, Yoshiga CC, Dalsgaard MK, Damsgaard R, Secher NH, González-Alonso J. Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans. J Physiol. 2005;566:273–85.

    Article  PubMed  CAS  Google Scholar 

  27. Ogawa T, Spina RJ, Martin 3rd WH, Kohrt WM, Schechtman KB, Holloszy JO, Ehsani AA. Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation. 1992;86:494–503.

    Article  PubMed  CAS  Google Scholar 

  28. González-Alonso J, Crandall CG, Johnson JM. Cardiovascular challenge of exercising in the heat. J Physiol. 2008;586:45–53.

    Article  PubMed  Google Scholar 

  29. Brukner P, Khan K. Clinical sports medicine. 2nd ed. Sydney: McGraw-Hill; 2002.

    Google Scholar 

  30. Montain SJ, Sawka MN, Latzka WA, Valeri CR. Thermal and cardiovascular strain from hypohydration: influence of exercise intensity. Int J Sports Med. 1998;19:87–91.

    Article  PubMed  CAS  Google Scholar 

  31. Coyle EF, González-Alonso J. Cardiovascular drift during prolonged exercise: new perspectives. Exerc Sport Sci Rev. 2001;29:88–92.

    Article  PubMed  CAS  Google Scholar 

  32. Trinity JD, Pahnke MD, Lee JF, Coyle EF. Interaction of hyperthermia and heart rate on stroke volume during prolonged exercise. J Appl Physiol. 2010;109: 745–51.

    Article  PubMed  Google Scholar 

  33. González-Alonso J, Mora-Rodríguez R, Coyle EF. Stroke volume during exercise: interaction of environment and hydration. Am J Physiol Heart Circ Physiol. 2000;278:H321–30.

    PubMed  Google Scholar 

  34. González-Alonso J, Dalsgaard MK, Osada T, Volianitis S, Dawson EA, Yoshiga CC, Secher NH. Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol. 2004;557:331–42.

    Article  PubMed  Google Scholar 

  35. Pendergast DR, Lundgren CE. The underwater environment: cardiopulmonary, thermal, and energetic demands. J Appl Physiol. 2009;106:276–83.

    Article  PubMed  CAS  Google Scholar 

  36. McArdle WD, Katch FI, Katch VL. Essentials of exercise physiology. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2000.

    Google Scholar 

  37. Sagiv M, Sagiv M, Ben-Sira D. Weight lifting training and left ventricular function in adolescent subjects. J Sports Med Phys Fitness. 2007;47:329–34.

    PubMed  CAS  Google Scholar 

  38. Rowland T, Heffernan K, Jae SY, Echols G, Krull G, Fernhall B. Cardiovascular responses to static exercise in boys: insights from tissue Doppler imaging. Eur J Appl Physiol. 2006;97:637–42.

    Article  PubMed  Google Scholar 

  39. Sagiv M, Hanson P, Besozzi M, Nagle F. Left ventricular responses to upright isometric handgrip and dead-lift in men with coronary artery disease. Am J Cardiol. 1985;55:1298–302.

    Article  PubMed  CAS  Google Scholar 

  40. Sagiv M, Metrany R, Fisher N, Fishman ZE, Kellerman JJ. Comparison of hemodynamic and left ventricular responses to increased after-load in healthy males and females. Int J Sports Med. 1991;12:41–5.

    Article  PubMed  CAS  Google Scholar 

  41. Dipla K, Zafeiridis A, Koidou I, Geladas N, Vrabas IS. Altered hemodynamic regulation and reflex control during exercise and recovery in obese boys. Am J Physiol Heart Circ Physiol. 2010;299:H2090–6.

    Article  PubMed  CAS  Google Scholar 

  42. Takahashi M, Matsukawa K, Nakamoto T, Tsuchimochi H, Sakaguchi A, Kawaguchi K, Onari K. Control of heart rate variability by cardiac parasympathetic nerve activity during voluntary static exercise in humans with tetraplegia. J Appl Physiol. 2007;103:1669–77.

    Article  PubMed  Google Scholar 

  43. Bryg RJ, Lewen NK, Williams GA, Labovitz AJ. Effects of isometric handgrip exercise on Doppler-derived parameters of aortic flow in normal subjects. Am J Cardiol. 1989;63:1410–2.

    Article  PubMed  CAS  Google Scholar 

  44. Williams MA, Haskell WL, Ades PA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update. A scientific statement from the American Heart Association Council on Clinical Cardiology and Council on nutrition, physical activity, and metabolism. Circulation. 2007;116:572–84.

    Article  PubMed  Google Scholar 

  45. Pollock ML, Franklin BA, Balady GJ, et al. Resistance exercise in individuals with and without cardiovascular disease. Benefits, rationale, safety, and prescription an advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association. Circulation. 2000;101:828–33.

    Article  PubMed  CAS  Google Scholar 

  46. Sagiv M, Sagiv M, Meckel Y, Ben-Sira D, Amir R. Effects of different sprint cycling bouts on left ventricular function in top cyclists. J Sports Med Phys Fitness. 2008;48:360–5.

    PubMed  CAS  Google Scholar 

  47. Noel M, Jobin J, Marcoux A, Poirier P, Dagenais G, Bogaty P. Comparison of myocardial ischemia on the ergocycle versus the treadmill in patients with coronary heart disease. Am J Cardiol. 2010;105:633–9.

    Article  PubMed  Google Scholar 

  48. Friedmann B, Frese F, Menold E, Bärtsch P. Effects of acute moderate hypoxia on anaerobic capacity in endurance-trained runners. Eur J Appl Physiol. 2007;101:67–73.

    Article  PubMed  CAS  Google Scholar 

  49. James DV, Sandals LE, Draper SB, Wood DM. Relationship between maximal oxygen uptake and oxygen uptake attained during treadmill middle-distance running. J Sports Sci. 2007;25:851–8.

    Article  PubMed  Google Scholar 

  50. Sagiv M, Ben-Sira D, Sagiv M, Goldhammer E. Left ventricular function at peak all-out anaerobic exercise in older men. Gerontology. 2005;51:122–5.

    Article  PubMed  Google Scholar 

  51. Sagiv M, Ben-Sira D, Goldhammer E, Soudry M. Left ventricular contractility and function at peak aerobic and anaerobic exercises. Med Sci Sports Exerc. 2000;32:1197–201.

    Article  PubMed  CAS  Google Scholar 

  52. Goodman JM, Liu PP, Green HJ. Left ventricular adaptations following short-term endurance training. J Appl Physiol. 2005;98:454–60.

    Article  PubMed  Google Scholar 

  53. Dawson EA, Shave R, Whyte G, et al. Preload maintenance and the left ventricular response to prolonged exercise in men. Exp Physiol. 2007;92:383–90.

    Article  PubMed  CAS  Google Scholar 

  54. Sagiv M, Ben-Sira D, Goldhammer E. Direct vs. indirect blood pressure measurement at peak anaerobic exercise. Int J Sports Med. 1999;20:275–8.

    Article  PubMed  CAS  Google Scholar 

  55. Krzemiński K, Kruk B, Nazar K, Ziemba AW, Cybulski G, Niewiadomski W. Cardiovascular, metabolic and plasma catecholamine responses to passive and active exercises. J Physiol Pharmacol. 2000;51:267–78.

    PubMed  Google Scholar 

  56. Sagiv M, Ben-Gal S, Ben-Sira D. Effects of gradient and load carried on human haemodynamic responses during treadmill walking. Eur J Appl Physiol. 2000;83:47–50.

    Article  PubMed  CAS  Google Scholar 

  57. Noël M, Jobin J, Poirier P, Dagenais GR, Bogaty P. Different thresholds of myocardial ischemia in ramp and standard bruce protocol exercise tests in patients with positive exercise stress tests and angiographically demonstrated coronary arterial narrowing. Am J Cardiol. 2007;99:921–4.

    Article  PubMed  Google Scholar 

  58. Kronenberg MW, Konstam MA, Edens TR, Howe DM, Dolan N, Udelson JE. Factors influencing exercise performance in patients with left ventricular dysfunction. SOLVD Investigators. Studies of Left Ventricular Dysfunction. J Card Fail. 1998;4:159–67.

    Article  PubMed  CAS  Google Scholar 

  59. Colao A, Cuocolo A, Marzullo P, et al. Impact of patient’s age and disease duration on cardiac ­performance in acromegaly: a radionuclide angiography study. J Clin Endocrinol Metab. 1999;84: 1518–23.

    Article  PubMed  CAS  Google Scholar 

  60. Monmeneu JV, Chorro FJ, Bodí V, et al. Relationships between heart rate variability, functional capacity, and left ventricular function following myocardial infarction: an evaluation after one week and six months. Clin Cardiol. 2001;24:313–20.

    Article  PubMed  CAS  Google Scholar 

  61. Motohiro M, Yuasa F, Hattori T, et al. Cardiovascular adaptations to exercise training after uncomplicated acute myocardial infarction. Am J Phys Med Rehabil. 2005;84:684–91.

    Article  PubMed  Google Scholar 

  62. González-Alonso J, Mortensen SP, Jeppesen TD. Haemodynamic responses to exercise, ATP infusion and thigh compression in humans: insight into the role of muscle mechanisms on cardiovascular function. J Physiol. 2008;586:2405–17.

    Article  PubMed  Google Scholar 

  63. Capelli C, Antonutto G, Kenfack MA, et al. Factors determining the time course of VO2(max) decay during bedrest: implications for VO2(max) limitation. Eur J Appl Physiol. 2006;98:152–60.

    Article  PubMed  CAS  Google Scholar 

  64. Ekblom B, Astrand PO, Saltin B, Stenberg J, Wallserom B. Effect of training on circulatory response to exercise. J Appl Physiol. 1968;24: 518–28.

    PubMed  CAS  Google Scholar 

  65. Longhurst JC, Stebbins CL. The power athlete. Cardiol Clin. 1997;15:413–29.

    Article  PubMed  CAS  Google Scholar 

  66. Stone MH, Fleck SJ, Triplett NT, Kraemer WJ. Health- and performance-related potential of resistance training. Sports Med. 1991;11:210–31.

    Article  PubMed  CAS  Google Scholar 

  67. Vasiliauskas D, Benetis R, Jasiukeviciene L, Grizas V, Marcinkeviciene J, Navickas R, Leimoniene L. Exercise training after coronary angioplasty improves cardiorespiratory function. Scand Cardiovasc J. 2007;41:142–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sagiv Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Sagiv, M.S. (2012). Cardiac Output. In: Exercise Cardiopulmonary Function in Cardiac Patients. Springer, London. https://doi.org/10.1007/978-1-4471-2888-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2888-5_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2887-8

  • Online ISBN: 978-1-4471-2888-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics