Skip to main content

Power-Based Modelling

  • Chapter
  • 5994 Accesses

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This chapter presents a systematic method to describe a large class of switched-mode power converters within the Brayton–Moser (BM) framework, a framework that has proven to be useful for analysis and control purposes. The approach forms an alternative to the switched Lagrangian and (port-)Hamiltonian formulations. The proposed methodology allows for the inclusion of often encountered devices like diodes, nonlinear (multi-port) resistors, and equivalent series resistors, a feature that does not seem feasible in the switched Lagrangian formulation. Additionally, and besides the fact that the BM equations allow for almost any type of nonlinear resistor, the framework constitutes a practical advantage since in most control applications the usual measured quantities are voltages and currents—instead of fluxes and charges as with the Lagrangian or (port-)Hamiltonian approaches. The application of the proposed framework to stability analysis, new passivity properties and control is briefly highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A circuit that allows for such decomposition is called topologically complete. An additional assumption is that the branch currents in Σ RL can be expressed in terms of the inductor currents and the branch voltages in Σ GC in terms of the capacitor voltages. Circuits that are not topologically complete can often be rendered topologically complete; see Sect. 8.4.

  2. 2.

    This terminology is adopted from the Lagrangian approach [19].

  3. 3.

    A practical switch is usually realised by a semi-conductor device such as a transistor, MOSFET (metal–oxide–semiconductor field-effect transistor), IGBT (insulated gate bipolar transistor), or a thyristor.

  4. 4.

    We adopt the sign convention that the power supplied to the circuit is taken with the negative sign.

  5. 5.

    A complete overview of the BM stability theorems, together with some generalisations, is presented in [14].

  6. 6.

    Systems for which P(x) is not positive semi-definite, but that do satisfy the inequality \(\frac {\mathrm {d}}{{\mathrm {d}}t}P(x) \leq - (\frac {\mathrm {d}}{{\mathrm {d}}t}x )^{\top}B(x)\sigma\), are called cyclo-passive; see e.g. [28].

References

  1. Brayton, R.K., Moser, J.K.: A theory of nonlinear networks I. Q. Appl. Math. 22(1), 1–33 (1964)

    MathSciNet  Google Scholar 

  2. Desoer, C.A., Kuh, E.S.: Basic Circuit Theory. McGraw-Hill, New York (1969)

    Google Scholar 

  3. Dirksz, D.A.: Robust energy- and power-based control design: Port-Hamiltonian and Brayton–Moser systems. Ph.D. thesis, University of Groningen (2011)

    Google Scholar 

  4. Dirksz, D.A., Scherpen, J.M.A.: Power-based control: Canonical coordinate transformations, integral and adaptive control. Automatica (2012). doi:10.1016/j.automatica.2012.03.003

    MATH  Google Scholar 

  5. Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H. (eds.): Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach. Springer, Berlin (2009)

    MATH  Google Scholar 

  6. Escobar, G., Van der Schaft, A.J., Ortega, R.: A Hamiltonian viewpoint in the modeling of switching power converters. Automatica 35, 445–452 (1999)

    Article  MATH  Google Scholar 

  7. Favache, A., Dochain, D.: Power-shaping control of reaction systems: The CSTR case. Automatica 46, 1877–1883 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fujimoto, K., Sugie, T.: Canonical transformation and stabilization of generalized Hamiltonian systems. Syst. Control Lett. 42(3), 217–227 (2001)

    Article  MathSciNet  Google Scholar 

  9. García-Canseco, E., Jeltsema, D., Ortega, R., Scherpen, J.M.A.: Power shaping control of physical systems. Automatica 46, 127–132 (2010)

    Article  MATH  Google Scholar 

  10. Hernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F., Escobar, G.: Adaptive PI stabilization of switched power converters. IEEE Trans. Control Syst. Technol. 18(3), 688–698 (2010)

    Article  Google Scholar 

  11. Hill, D., Moylan, P.: The stability of nonlinear dissipative systems. IEEE Trans. Autom. Control 21(5), 708–711 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hiti, S., Borojević, D.: Control of front-end three-phase Boost rectifier. In: Proc. of the Applied Power Electronics Conference, Orlando, Florida, USA, pp. 927–933 (1994)

    Google Scholar 

  13. Jeltsema, D., Scherpen, J.M.A.: Tuning of passivity-preserving controllers for switched-mode power converters. IEEE Trans. Autom. Control 49(8), 1333–1344 (2004)

    Article  MathSciNet  Google Scholar 

  14. Jeltsema, D., Scherpen, J.M.A.: On Brayton and Moser’s missing stability theorem. IEEE Trans. Circuits Syst. II 52(9), 550–552 (2005)

    Article  Google Scholar 

  15. Kazmierkowski, M., Krishnan, R., Blaabjerg, F. (eds.): Control in Power Electronics: Selected Problems. Academic Press, San Diego (2002)

    Google Scholar 

  16. Leonhard, W.: Control of Electrical Drives, 3rd edn. Springer, Berlin (2001)

    Book  Google Scholar 

  17. Moser, J.K.: Bistable systems of differential equations with applications to tunnel diode circuits. IBM J. Res. Dev. 5, 226–240 (1960)

    Article  Google Scholar 

  18. Ortega, R., Jeltsema, D., Scherpen, J.M.A.: Power shaping: A new paradigm for stabilization of nonlinear RLC circuits. IEEE Trans. Autom. Control 48(10), 1762–1767 (2003)

    Article  MathSciNet  Google Scholar 

  19. Ortega, R., Loría, A., Nicklasson, P.J., Sira-Ramírez, H.: Passivity-Based Control of Euler-Lagrange Systems; Mechanical, Electrical and Electromechanical Applications. Springer, Berlin (1998)

    Google Scholar 

  20. Ortega, R., van der Schaft, A.J., Mareels, I., Maschke, B.M.: Putting energy back in control. IEEE Control Syst. Mag. 21(2), 18–33 (2001)

    Article  Google Scholar 

  21. Savant, C.J. Jr., Roden, M.S., Carpenter, G.L.: Electronic Design: Circuits and Systems, 2nd edn. Benjamin–Cummings Publishing Company, San Francisco (1991)

    Google Scholar 

  22. Scherpen, J.M.A., Jeltsema, D., Klaassens, J.B.: Lagrangian modeling of switching electrical networks. Syst. Control Lett. 48(5), 365–374 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sira-Ramírez, H., de Nieto, M.D.: A Lagrangian approach to average modeling of pulse width-modulation controlled DC-to-DC power converters. IEEE Trans. Circuits Syst. I 43(5), 427 (1996)

    Article  Google Scholar 

  24. Stöhr, A.: Über gewisse nich notwendig lineare (n+1)-pole. Arch. Electron. Übertr. Tech. 7, 546–548 (1953)

    Google Scholar 

  25. Van der Schaft, A.J.: -Gain and Passivity Techniques in Nonlinear Control. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  26. Weiss, L., Mathis, W., Trajkovic, L.: A generalization of Brayton–Moser’s mixed-potential function. IEEE Trans. Circuits Syst. I 45(4), 423–427 (1998)

    Article  MATH  Google Scholar 

  27. Wells, D.A.: A power function for the determination of Lagrangian generalized forces. J. Appl. Phys. 16(9), 535–538 (1945)

    Article  MathSciNet  Google Scholar 

  28. Willems, J.C.: Dissipative dynamical system part i: General theory. Arch. Ration. Mech. Anal. 45(5), 321–351 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Jeltsema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Jeltsema, D., Scherpen, J.M.A. (2012). Power-Based Modelling. In: Vasca, F., Iannelli, L. (eds) Dynamics and Control of Switched Electronic Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2885-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2885-4_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2884-7

  • Online ISBN: 978-1-4471-2885-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics