Skip to main content

Distributed-Order Filtering and Distributed-Order Optimal Damping

  • Chapter
  • First Online:
  • 1181 Accesses

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSCONTROL))

Abstract

The idea of using the distributed-order differential equation first proposed by Caputo in (1969) is at least mathematically interesting as demonstrated in the previous chapters. However, people may question its usefulness in engineering practice. In this chapter, we included two generic applications. One is on distributed order signal processing and the other is on optimal distributed damping. We hope these two initial applications can serve as motivating examples to further the investigation in distributed order dynamics systems, signal processing, modeling and controls.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It follows from the residue of \(\frac{\mathrm{ e}^{st}(s^{-a}-s^{-b})}{\ln (s)}\) which equals zero at \(s=\infty \), that the path integral of it along \(s\rightarrow \infty \) is vanished for \(b\le 1.\)

  2. 2.

    When \(s=0\), DC gain of \(\int _a^b\frac{1}{(s+\lambda )^\alpha }\mathrm{ d}\alpha =\int _a^b\frac{1}{\lambda ^\alpha }\mathrm{ d}\alpha =\frac{1}{\ln \lambda }\left(\frac{1}{\lambda ^a}-\frac{1}{\lambda ^b}\right)\). So, unity gain requires gain scaling factor \(\frac{\lambda ^{a+b}\ln \lambda }{\lambda ^b-\lambda ^a}.\)

References

  • Adams JL, Hartley TT, Lorenzo CF (2008) Identification of complex order-distributions. J Vib Control 14(9–10):1375–1388

    Article  MathSciNet  MATH  Google Scholar 

  • Barbosa RS, Machado JAT (2006) Implementation of discrete-time fractional-order controllers based on LS approximations. Acta Polytech Hung 3(4):5–22

    Google Scholar 

  • Caputo M (1969) Elasticità e dissipazione. Zanichelli, Bologna

    Google Scholar 

  • Chen YQ (2003) Low-pass IIR digital differentiator design. http://www.mathworks.com/matlabcentral/fileexchange/3517

  • Chen YQ (2008a) Impulse response invariant discretization of fractional order integrators or differentiators. http://www.mathworks.com/matlabcentral/fileexchange/21342

  • Chen YQ (2008b) Impulse response invariant discretization of fractional order low-pass filters. http://www.mathworks.com/matlabcentral/fileexchange/21365

  • Chen YQ, Moore KL (2002) Discretization schemes for fractional-order differentiators and integrators. IEEE Trans Circuits Syst I Fundam Theory Appl 49(3):363–367

    Article  MathSciNet  Google Scholar 

  • Chen YQ, Vinagre BM (2003) A new IIR-type digital fractional order differentiator. Signal Process 83(11):2359–2365

    Article  MATH  Google Scholar 

  • Chen YQ, Vinagre BM, Podlubny I (2004) Continued fraction expansion approaches to discretizing fractional order derivatives—an expository review. Nonlinear Dyn 38(16):155–170, Dec 2004

    Google Scholar 

  • Dalir M, Bashour M (2010) Applications of fractional calculus. Appl Math Sci 4(21–24):1021–1032

    MathSciNet  MATH  Google Scholar 

  • D’Azzo JJ, Houpis CH, Sheldon SN (2003) Linear control system analysis and design, 5th edn. CRC Press, Boca Raton

    Google Scholar 

  • De Espíndola JJ, Bavastri CA, De Oliveira Lopes EM (2008) Design of optimum systems of viscoelastic vibration absorbers for a given material based on the fractional calculus model. J Vib Control 14(9–10):1607–1630

    Article  MathSciNet  MATH  Google Scholar 

  • Dorf RC (1989) Modern control systems. Addison-Wesley Longman, Boston

    Google Scholar 

  • Ferdi Y (2009) Impulse invariance-based method for the computation of fractional integral of order \(0<\alpha <1.\) Comput Electr Eng 35(5):722–729

    Google Scholar 

  • Hartley TT, Lorenzo CF (2003) Fractional-order system identification based on continuous order-distributions. Signal Process 83(11):2287–2300

    Article  MATH  Google Scholar 

  • Hartley TT, Lorenzo CF (2004) A frequency-domain approach to optimal fractional-order damping. Nonlinear Dyn 38(1–2):69–84

    Article  MathSciNet  MATH  Google Scholar 

  • Koeller RC (1984) Applications of fractional calculus to the theory of viscoelasticity. J Appl Mech 51(2):299–307

    Article  MathSciNet  MATH  Google Scholar 

  • Komkov V (1972) Optimal control theory for the damping of vibrations of simple elastic systems. Springer, Berlin

    MATH  Google Scholar 

  • Li Y, Sheng H, Chen YQ (2010a) Impulse response invariant discretization of distributed order low-pass filter. http://www.mathworks.com/matlabcentral/fileexchange/authors/82211

  • Li Y, Sheng H, Chen YQ (2010b) On distributed order integrator/differentiator. Signal Process 91(5)(5):1079–1084

    Google Scholar 

  • Li Y, Sheng H, Chen YQ (2011) Analytical impulse response of a fractional second order filter and its impulse response invariant discretization. Signal Process 91(3):498–507

    Article  MATH  Google Scholar 

  • Lion A (1997) On the thermodynamics of fractional damping elements. Continuum Mech Thermodyn 9(2):83–96

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenzo CF, Hartley TT (2002) Variable order and distributed order fractional operators. Nonlinear Dyn 29(1–4):57–98

    Article  MathSciNet  MATH  Google Scholar 

  • Lubich C (1986) Discretized fractional calculus. SIAM J Math Anal 17(3):704–719

    Article  MathSciNet  MATH  Google Scholar 

  • Machado JAT (1997) Analysis and design of fractional-order digital control systems. Syst Anal Model Simul 27(2–3):107–122

    Google Scholar 

  • Ogata K (1970) Modern control engineering. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Oustaloup A (1981) Fractional order sinusoidal oscillators: optimization and their use in highly linear FM modulation. IEEE Trans Circuits Syst 28(10):1007–1009

    Article  Google Scholar 

  • Oustaloup A, Levron F, Mathieu B, Nanot FM (2000) Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans Circuits Syst I Fundam Theory Appl 47(1):25–39

    Article  Google Scholar 

  • Padovan J, Guo YH (1988) General response of viscoelastic systems modelled by fractional operators. J Frankl Inst 325(2):247–275

    Article  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Radwan AG, Soliman AM, Elwakil AS (2007) Design equations for fractional-order sinusoidal oscillators: practical circuit examples. In: Proceedings of the internatonal conference on microelectronics, pp 89–92, Dec 2007

    Google Scholar 

  • Radwan AG, Elwakil AS, Soliman AM (2008) Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans Circuits Syst I Regul Pap 55(7):2051–2063

    Article  MathSciNet  Google Scholar 

  • Rossikhin YA, Shitikova MV (1997) Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems. Acta Mech 120(1–4):109–125

    Article  MathSciNet  MATH  Google Scholar 

  • Rüdinger F (2006) Tuned mass damper with fractional derivative damping. Eng Struct 28(13):1774–1779

    Article  Google Scholar 

  • Sheng H (2010) Impulse response invariant discretization of distributed order integrator. http://www.mathworks.com/matlabcentral/fileexchange/26380

  • Shafieezadeh A, Ryan K, Chen YQ (2008) Fractional order filter enhanced LQR for seismic protection of civil structures. J Comput Nonlinear Dyn 3(2):020201.1–021404.7

    Google Scholar 

  • Shokooh A (1999) A comparison of numerical methods applied to a fractional model of damping materials. J Vib Control 5(3):331–354

    Article  MathSciNet  Google Scholar 

  • Steiglitz K, McBride L (1965) A technique for the identification of linear systems. IEEE Trans Autom Control 10(4):461–464

    Article  Google Scholar 

  • Tavazoei MS (2010) Notes on integral performance indices in fractional-order control systems. J Process Control 20(3):285–291

    Article  Google Scholar 

  • Vinagre BM, Chen YQ, Petras I (2003) Two direct Tustin discretization methods for fractional-order differentiator/integrator. J Frankl Inst 340(5):349–362

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YangQuan Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Jiao, Z., Chen, Y., Podlubny, I. (2012). Distributed-Order Filtering and Distributed-Order Optimal Damping. In: Distributed-Order Dynamic Systems. SpringerBriefs in Electrical and Computer Engineering(). Springer, London. https://doi.org/10.1007/978-1-4471-2852-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2852-6_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2851-9

  • Online ISBN: 978-1-4471-2852-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics