Skip to main content

Using Electric Vehicles for Road Transport

  • Chapter
  • First Online:
Energy, Transport, & the Environment

Abstract

Road vehicles account for almost half of the energy used in all transport modes globally. Reducing energy use in vehicles is key to meeting the forecast increase in demand for transport, while improving energy security and mitigating climate change. Non-powertrain vehicle options may reduce fuel consumption by at least 15%. Electric motors are the significant powertrain option to reduce energy use in vehicles because they are more efficient than the internal combustion engine and can recover a portion of the vehicle kinetic energy during braking. Conventionally, batteries are used to meet both the power and energy demands of electric vehicles and their variants. However, batteries are well-suited to store energy, while ultra-capacitors and high-speed flywheels are better placed to meet the bidirectional, high power requirements of real-world driving. Combining technologies with complementary strengths can yield a lower cost and more efficient energy storage system. While pure and hybrid electric vehicles use less energy than internal combustion engine vehicles, their ability to mitigate climate change is a function of the emissions intensity of the processes used to generate their electricity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The 2008 value was determined by a linear interpolation on the 2000–2050 dataset of energy and emissions, yielding correlation coefficients of R 2 = 0.997 and R 2 = 0.997, respectively.

  2. 2.

    Not all ultra-capacitors outperform all batteries. Some high power battery models have specific power performance that is comparable with ultra-capacitors [48].

  3. 3.

    In this study, the version of the Focus that was used was the 1.6 TDCi ECOnetic because it was the lowest CO2 emitting Focus at the time this study was conducted.

  4. 4.

    Data from carbon monitoring for action (CARMA), available online at www.carma.org.

References

  1. IEA (2010) Key World Energy Statistics 2010. International Energy Agency, Paris. http://www.iea.org/textbase/nppdf/free/2010/key_stats_2010_OnlinePDF.pdf

  2. Fulton L, Eads G (2004) IEA/SMP Model documentation and reference case projection. International Energy Agency/World Business Council for Sustainable Development, Paris. http://www.wbcsd.org/web/publications/mobility/smp-model-document_OnlinePDF.pdf

  3. IEA (2009) Key World Energy Statistics 2009. International Energy Agency, Paris

    Google Scholar 

  4. Fulton L (2004) The IEA/SMP Transportation model. International Energy Agency/World Business Council for Sustainable Development, Paris. http://www.wbcsd.org/web/publications/mobility/smp-model-spreadsheet.xls

  5. André M (2004) Real-world driving cycles for measuring cars pollutant emissions––Part A: the ARTEMIS European driving cycles. INRETS-LTE 0411. Institut National de Recherche sur les Transports et leur Securite (INRETS), Bron

    Google Scholar 

  6. Joumard R, André M, Vidon R, Tassel P, Pruvost C (2000) Influence of driving cycles on unit emissions from passenger cars. Atmos Environ 34(27):4621

    Article  Google Scholar 

  7. SMMT (2010) Motor Industry Facts 2010. London. http://lib.smmt.co.uk/articles/sharedfolder/Publications/SMMT_WEB_2010_100dpi_OnlinePDF.pdf

  8. Fenske G, Erck R, Ajayi L, Erdemir A, Eryilmaz O (2006) Parasitic energy loss mechanisms impact on vehicle system efficiency. Argonne National Laboratory, 2006, Illinois. http://www1.eere.energy.gov/vehiclesandfuels/pdfs/hvso_2006/07_fenske_OnlinePDF.pdf

  9. Hucho WH (ed) (1987) Aerodynamics of road vehicles: from fluid mechanics to vehicle engineering. Cambridge University Press, Cambridge

    Google Scholar 

  10. Hucho WH, Sovran G (1993) Aerodynamics of road vehicles. Annu Rev Fluid Mech 25:485. doi: 10.1146/annurev.fl.25.010193.002413

    Article  Google Scholar 

  11. Koike M, Nagayoshi T, Hamamoto N (2004) Research on aerodynamic drag reduction by Vortex Generators. Mitsubishi Motors Tech Rev 16:11. http://www.mitsubishi-motors.com/corporate/aboutus/technology/review/e/pdf/2004/16E_03_OnlinePDF.pdf

    Google Scholar 

  12. Nunney MJ (2007) Light and heavy vehicle technology, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  13. Guzzella L, Sciarretta A (2007) Vehicle propulsion systems: introduction to modeling and optimization, 2nd edn. Springer, Berlin

    Google Scholar 

  14. IEA (2008) Energy Technology Perspectives 2008—Scenarios and Strategies to 2050. International Energy Agency, Paris

    Google Scholar 

  15. IEA (2009) Transport, energy and CO2. International Energy Agency, Paris. http://www.iea.org/textbase/nppdf/free/2009/transport2009_OnlinePDF.pdf

  16. Kobayashi S, Plotkin S, Ribeiro SK (2009) Energy efficiency technologies for road vehicles. Energy Effic 2(2):125. doi: 10.1007/s12053-008-9037-3

    Article  Google Scholar 

  17. Beaudoin JF, Cadot O, Aider JL, Gosse K, Paranthoën P, Hamelin B, Tissier M, Allano D, Mutabazi I, Gonzales M et al (2004) Cavitation as a complementary tool for automotive aerodynamics. Exp Fluids 37(5):763. doi: 10.1007/s00348-004-0879-y

    Article  Google Scholar 

  18. TRB (2006) Tires and passenger vehicle fuel economy: informing consumers, improving performance––special report 286. The National Academy of Sciences, USA. http://onlinepubs.trb.org/onlinepubs/sr/sr286_OnlinePDF.pdf

  19. Goldberg LH (2000) Green electronics, green bottom line: environmentally responsible engineering. Butterworth-Heinemann, Oxford, Chap. 24

    Google Scholar 

  20. Bjelkengren C (2008) The impact of mass decompounding on assessing the value of vehicle lightweighting. PhD thesis, Massachusetts Institute of Technology, Massachusetts. http://msl.mit.edu/students/msl_theses/Bjelkengren_C-thesis_OnlinePDF.pdf

  21. Cheah LW (2010) Cars on a diet: the material and energy impacts of passenger vehicle weight reduction in the U.S. PhD thesis, Massachusetts Institute of Technology, Massachusetts. doi: http://web.mit.edu/sloan-auto-lab/research/beforeh2/files/LCheah_PhD_thesis_2010_OnlinePDF.pdf

  22. Malen DE, Reddy K (2007) Preliminary vehicle mass estimation using empirical subsystem influence coefficients. Auto/Steel Partnership. Ann Arbor. http://www.asp.org/database/custom/Mass%20Compounding%20%20Final%20Report_OnlinePDF.pdf

  23. Rakopoulos CD, Glakoumis EG (2006) Second-law analyses applied to internal combustion engines operation. Prog Energy Combust Sci 32(1):2. doi: 10.1016/j.pecs.2005.10.001

    Article  Google Scholar 

  24. Brusstar M, Stuhldreher M, Swain D, Pidgeon W (2002) High efficiency and low emissions from a port-injected engine with neat alcohol fuels. 2002-01-2743. Society of Automotive Engineers, Byron Bay. http://www.stonis-world.net/docs/engine_with_neat_alcohol_fuels_OnlinePDF.pdf

  25. Husain I (2003) Electric and hybrid vehicles. CRC Press, Florida

    Google Scholar 

  26. Boretti A (2010) Comparison of fuel economies of high efficiency diesel and hydrogen engines powering a compact car with a flywheel based kinetic energy recovery systems. Int J Hydrogen Energy 35(16):8417. doi: 10.1016/j.ijhydene.2010.05.031

    Article  Google Scholar 

  27. Williamson SS, Emadi A, Rajashekara K (2007) Comprehensive efficiency modeling of electric traction motor drives for hybrid electric vehicle propulsion applications. IEEE Trans Veh Technol 56(4):1651. doi:10.1109/TVT.2007.896967

    Article  Google Scholar 

  28. Hughes E (1995) Electrical technology, 7th edn. Longman, London

    Google Scholar 

  29. Kenjo T, Nagamori S (2003) Brushless motors: advanced theory and modern applications. Sogo Electronics Press, Tokyo

    Google Scholar 

  30. Woolmer TJ, McCulloch MD (2007) Analysis of the yokeless and segmented armature machine. In: Electric machines and drives conference (IEMDC). Antalya, Turkey, pp 704–708. doi: 10.1109/IEMDC.2007.382753

  31. Zeraoulia M, Benbouzid MEH, Diallo D (2006) Electric motor drive selection issues for HEV propulsion systems: a comparative study. IEEE Trans Veh Technol 55(6):1756. doi:10.1109/TVT.2006.878719

    Article  Google Scholar 

  32. Chau KT, Chan CC, Liu C (2008) Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans Ind Electron 55(6):2246. doi:10.1109/TIE.2008.918403

    Article  Google Scholar 

  33. Westbrook MH (2001) The electric car: development and future of battery, hybrid, and fuel-cell cars. The Institution of Electrical Engineers, London

    Google Scholar 

  34. West JGW (1994) DC, induction, reluctance and PM motors for electric vehicles. Power Eng J 8(2):77. doi:10.1049/pej:19930203

    Article  Google Scholar 

  35. Uematsu T, Wallace RS (1995) Design of a 100 kW switched reluctance motor for electric vehicle propulsion. In: Tenth annual applied power electronics conference and exposition (APEC), vol 1. Dallas, USA, pp 411–415. doi: 10.1109/APEC.1995.468981

  36. Miller JM (2004) Propulsion systems for hybrid vehicles. The Institution of Electrical Engineers, London

    Book  Google Scholar 

  37. Lukic SM, Cao J, Bansal RC, Rodriguez F, Emadi A (2008) Energy storage systems for automotive applications. IEEE Trans Ind Electron 55(6):2258. doi:10.1109/TIE.2008.918390

    Article  Google Scholar 

  38. Burke A, Zhao H (2010) Simulations of plug-in hybrid vehicles using advances lithium batteries and ultracapacitors on various driving cycles. UCD-ITS- RR-10-02. University of California-Davis Institute of Transportation Studies, Davis

    Google Scholar 

  39. Rydh CJ, Sandén BA (2005) Energy analysis of batteries in photovoltaic systems. Part I: performance and energy requirements. Energy Convers Manag 46(11–12):1957. doi: 10.1016/j.enconman.2004.10.003

    Article  Google Scholar 

  40. Divya KC, Østergaard J (2009) Battery energy storage technology for power systems—an overview. Electr Power Syst Res 79(4):511. doi:10.1016/j.epsr.2008.09.017

    Article  Google Scholar 

  41. Palaćın MR (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38:2565. doi: 10.1039/b820555h

    Article  Google Scholar 

  42. Berndt D (2003) Battery technology handbook, 2nd edn. Expert Verlag, Renningen-Malsheim, Chap. 1, pp 1, 5, 6

    Google Scholar 

  43. Cross D, Hilton J (2008) High speed flywheel based hybrid systems for low carbon vehicles. In: IET hybrid and eco-friendly vehicle conference (HEVC). Coventry, UK

    Google Scholar 

  44. Schoenung SM, Hassenzahl WV (2003) Long- vs. short-term energy storage technologies analysis a life-cycle cost study a study for the doe energy storage systems program. SAND2003-2783. Sandia National Laboratories, Washington. http://prod.sandia.gov/techlib/access-control.cgi/2003/032783_OnlinePDF.pdf

  45. Lipman TE, Delucchi MA (2003) Hybrid-electric vehicle design retail and life-cycle cost analysis. UCD-ITS-RR-03-01. Energy and Resources Group, University of California, Berkeley

    Google Scholar 

  46. Dixon J, Nakashima I, Arcos EF, Ortuzar M (2010) Electric vehicle using a combination of ultracapacitors and ZEBRA battery. IEEE Trans Ind Electr 57(3):943. doi:10.1109/TIE.2009.2027920

    Article  Google Scholar 

  47. Frenzel B, Kurzwell P, Roönnebeck H (2011) Electromobility concept for racing cars based on lithium-ion batteries and supercapacitors. J Power Sour 196(12):5364. doi: 10.1016/j.jpowsour.2010.10.057

    Article  Google Scholar 

  48. Burke A, Miller M (2011) The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications. J Power Sour 196(1):514. doi:10.1016/j.jpowsour.2010.06.092

  49. Auer J, Sartorelli G, Miller J (2006) In: IET hybrid vehicle conference. Coventry, UK, pp 79–90

    Google Scholar 

  50. Van den Bossche P, Vergels F, Van Mierlo J, Matheys J, Van Autenboer W (2006) SUBAT: an assessment of sustainable battery technology. J Power Sour 162(2):913. doi:10.1016/j.jpowsour.2005.07.039

    Article  Google Scholar 

  51. Chan CC (2007) The state of the art of electric, hybrid, and fuel cell vehicles. Proc IEEE 95(4):704. doi:10.1109/JPROC.2007.892489

  52. Karden E, Ploumen S, Fricke B, Miller T, Snyder K (2007) Energy storage devices for future hybrid electric vehicles. J Power Sour 168(1):2. doi:10.1016/j.jpowsour.2006.10.090

    Article  Google Scholar 

  53. Khaligh A, Li Z (2010) Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art. IEEE Trans Veh Technol 59(6):2806. doi:10.1109/TVT.2010.2047877

  54. Toyota Prius Technical Specifications. http://www.toyotagb-press.co.uk/protected/vehicles/current/press_packs/prius/tech_spec_OnlinePDF.pdf. Accessed 21 July 2011

  55. Gaines L, Cuenca R (2000) Costs of lithium–ion batteries for vehicles. ESD-42. Argonne National Laboratory, Illinois

    Google Scholar 

  56. Gao Y, Gay SE, Ehsani M, Thelen RF, Hebner RE (2003) Flywheel electric motor/generator characterization for hybrid vehicles. In: IEEE 58th vehicular technology conference-fall, vol. 5. Orlando, USA, pp 3321–3325. doi: 10.1109/VETECF.2003.1286291

  57. Diego-Ayala U, Martinez-Gonzalez P, McGlashan N, Pullen KR (2008) The mechanical hybrid vehicle: an investigation of a flywheel-based vehicular regenerative energy capture system. Proc Inst Mech Eng, Part D: J Automob Eng 222(11):2087. doi:10.1243/09544070JAUTO677

  58. Bolund B, Bernhoff H, Leijon M (2007) Flywheel energy and power storage systems. Renew Sustain Energy Rev 11(2):235. doi:10.1016/j.rser.2005.01.004

    Article  Google Scholar 

  59. Van Mierlo J, Maggetto G (2004) Innovative iteration algorithm for a vehicle simulation program. IEEE Trans Veh Technol 53(2):401. doi:10.1109/TVT.2004.823534

    Article  Google Scholar 

  60. Solero L, Lidozzi A, Serrao V, Martellucci L, Rossi E (2011) Ultracapacitors for fuel saving in small size hybrid vehicles. J Power Sour 196(1):587. doi:10.1016/j.jpowsour.2009.07.041

  61. Doucette RT (2010) The oxford vehicle model manual: a tool for modeling and simulating the powertrains of electric and hybrid electric vehicles. Energy and Power Group, Department of Engineering Science, University of Oxford, Oxford. http://epg.eng.ox.ac.uk/sites/default/files/OVEM%20Manual%20pdf%20July%2019%202010_OnlinePDF.pdf

  62. Doucette RT, McCulloch MD (2011) A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle. J Power Sour 196(3):1163. doi:10.1016/j.jpowsour.2010.08.100

  63. Doucette RT, McCulloch MD (2011) Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries. Energy Policy 39(2):803. doi:10.1016/j.enpol.2010.10.054

  64. Doucette RT, McCulloch MD (2011) Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions. Appl Energy 88(7):2315. doi:10.1016/j.apenergy.2011.01.045

  65. Chamon M, Mauro P, Okawa Y (2008) Mass car ownership in the emerging market giants. Econ Policy 23(54):243. doi:10.1111/j.1468-0327.2008.00201.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm D. McCulloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McCulloch, M.D., Bishop, J.D.K., Doucette, R.T. (2012). Using Electric Vehicles for Road Transport. In: Inderwildi, O., King, S. (eds) Energy, Transport, & the Environment. Springer, London. https://doi.org/10.1007/978-1-4471-2717-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2717-8_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2716-1

  • Online ISBN: 978-1-4471-2717-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics