Skip to main content

Influence of Wear Particles on Local and Systemic Immune System

  • Chapter
  • First Online:
Infected Total Joint Arthroplasty

Abstract

Decreasing periprosthetic osteolysis due to wear particles is a current challenge and an on-going research endeavor to prolong the longevity of joint replacements. The aim of this chapter is to provide the reader keys to the understanding of how the immune system interacts with metallic and non metallic wear particles and other byproducts from joint replacements. The local and systemic immune system is involved in a complex network of chemokines, cytokines, and different cell types which in the end leads to inflammation and a foreign body reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bozic KJ, Kurtz S, Lau E, et al. The epidemiology of bearing surface usage in total hip arthroplasty in the United States. J Bone Joint Surg Am. 2009;91:1614–20.

    Article  PubMed  Google Scholar 

  2. Bozic KJ, Ong K, Lau E, et al. Risk of complication and revision total hip arthroplasty among Medicare patients with different bearing surfaces. Clin Orthop Relat Res. 2010;468:2357–62.

    Article  PubMed  Google Scholar 

  3. Sundfeldt M, Carlsson LV, Johansson CB, et al. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 2006;77:177–97.

    Article  PubMed  Google Scholar 

  4. Bozic KJ, Kurtz SM, Lau E, et al. The epidemiology of revision total knee arthroplasty in the United States. Clin Orthop Relat Res. 2009;468:45–51.

    Article  PubMed  Google Scholar 

  5. Ries MD, Scott ML, Jani S. Relationship between gravimetric wear and particle generation in hip simulators: conventional compared with cross-linked polyethylene. J Bone Joint Surg Am. 2001;83-A(Suppl 2 Pt 2):116–22.

    PubMed  Google Scholar 

  6. Campbell P, Ma S, Yeom B, et al. Isolation of predominantly submicron-sized UHMWPE wear particles from periprosthetic tissues. J Biomed Mater Res. 1995;29:127–31.

    Article  PubMed  CAS  Google Scholar 

  7. Doorn PF, Campbell PA, Worrall J, et al. Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J Biomed Mater Res. 1998;42:103–11.

    Article  PubMed  CAS  Google Scholar 

  8. Ingham E, Fisher J. The role of macrophages in osteolysis of total joint replacement. Biomaterials. 2005;26:1271–86.

    Article  PubMed  CAS  Google Scholar 

  9. Hatton A, Nevelos JE, Nevelos AA, et al. Alumina-alumina artificial hip joints. Part I: a histological analysis and characterisation of wear debris by laser capture microdissection of tissues retrieved at revision. Biomaterials. 2002;23:3429–40.

    Article  PubMed  CAS  Google Scholar 

  10. Goodman SB. Wear particles, periprosthetic osteolysis and the immune system. Biomaterials. 2007;28:5044–8.

    Article  PubMed  CAS  Google Scholar 

  11. Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg Am. 1992;74:849–63.

    PubMed  CAS  Google Scholar 

  12. Xing S, Waddell JE, Boynton EL. Changes in macrophage morphology and prolonged cell viability following exposure to polyethylene particulate in vitro. Microsc Res Tech. 2002;57:523–9.

    Article  PubMed  Google Scholar 

  13. Tuan RS, Lee FY, T Konttinen Y, et al. What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles? J Am Acad Orthop Surg. 2008;16 Suppl 1:S42–8.

    PubMed  Google Scholar 

  14. Pearl JI, Ma T, Irani AR, et al. Role of the Toll-like receptor pathway in the recognition of orthopedic implant wear-debris particles. Biomaterials. 2011;32:5535–42.

    Article  PubMed  CAS  Google Scholar 

  15. Willert HG, Semlitsch M. Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res. 1977;11:157–64.

    Article  PubMed  CAS  Google Scholar 

  16. Goodman SB, Lind M, Song Y, Smith RL. In vitro, in vivo, and tissue retrieval studies on particulate debris. Clin Orthop Relat Res. 1998;352:25–34.

    Google Scholar 

  17. Santavirta S, Konttinen YT, Bergroth V, et al. Aggressive granulomatous lesions associated with hip arthroplasty. Immunopathological studies. J Bone Joint Surg Am. 1990;72:252–8.

    PubMed  CAS  Google Scholar 

  18. Rakshit DS, Ly K, Sengupta TK, et al. Wear debris inhibition of anti-osteoclastogenic signaling by interleukin-6 and interferon-gamma. Mechanistic insights and implications for periprosthetic osteolysis. J Bone Joint Surg Am. 2006;88:788–99.

    Article  PubMed  Google Scholar 

  19. Goodman SB, Huie P, Song Y, et al. Cellular profile and cytokine production at prosthetic interfaces. Study of tissues retrieved from revised hip and knee replacements. J Bone Joint Surg Br. 1998;80:531–9.

    Article  PubMed  CAS  Google Scholar 

  20. Green TR, Fisher J, Matthews JB, et al. Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J Biomed Mater Res. 2000;53:490–7.

    Article  PubMed  CAS  Google Scholar 

  21. Goodman SB, Trindade M, Ma T, et al. Pharmacologic modulation of periprosthetic osteolysis. Clin Orthop Relat Res. 2005;430:39–45.

    Google Scholar 

  22. Cook DN. The role of MIP-1 alpha in inflammation and hematopoiesis. J Leukoc Biol. 1996;59:61–6.

    PubMed  CAS  Google Scholar 

  23. Horowitz SM, Gonzales JB. Effects of polyethylene on macrophages. J Orthop Res. 1997;15:50–6.

    Article  PubMed  CAS  Google Scholar 

  24. Archibeck MJ, Jacobs JJ, Roebuck KA, Glant TT. The basic science of periprosthetic osteolysis. Instr Course Lect. 2001;50:185–95.

    PubMed  CAS  Google Scholar 

  25. Moilanen E, Moilanen T, Knowles R, et al. Nitric oxide synthase is expressed in human macrophages during foreign body inflammation. Am J Pathol. 1997;150:881–7.

    PubMed  CAS  Google Scholar 

  26. Wang ML, Hauschka PV, Tuan RS, Steinbeck MJ. Exposure to particles stimulates superoxide production by human THP-1 macrophages and avian HD-11EM osteoclasts activated by tumor necrosis factor-alpha and PMA. J Arthroplasty. 2002;17:335–46.

    Article  PubMed  Google Scholar 

  27. Shanbhag AS, Macaulay W, Stefanovic-Racic M, Rubash HE. Nitric oxide release by macrophages in response to particulate wear debris. J Biomed Mater Res. 1998;41:497–503.

    Article  PubMed  CAS  Google Scholar 

  28. Horiki M, Nakase T, Myoui A, et al. Localization of RANKL in osteolytic tissue around a loosened joint prosthesis. J Bone Miner Metab. 2004;22:346–51.

    Article  PubMed  CAS  Google Scholar 

  29. Wang C-T, Lin Y-T, Chiang B-L, et al. Over-expression of receptor activator of nuclear factor-kappaB ligand (RANKL), inflammatory cytokines, and chemokines in periprosthetic osteolysis of loosened total hip arthroplasty. Biomaterials. 2010;31:77–82.

    Article  PubMed  Google Scholar 

  30. Stern PH, Krieger NS, Nissenson RA, et al. Human transforming growth factor-alpha stimulates bone resorption in vitro. J Clin Invest. 1985;76:2016–9.

    Article  PubMed  CAS  Google Scholar 

  31. Takahashi N, MacDonald BR, Hon J, et al. Recombinant human transforming growth factor-alpha stimulates the formation of osteoclast-like cells in long-term human marrow cultures. J Clin Invest. 1986;78:894–8.

    Article  PubMed  CAS  Google Scholar 

  32. Clohisy JC, Frazier E, Hirayama T, Abu-Amer Y. RANKL is an essential cytokine mediator of polymethylmethacrylate particle-induced osteoclastogenesis. J Orthop Res. 2003;21:202–12.

    Article  PubMed  CAS  Google Scholar 

  33. Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992;307:97–101.

    Article  PubMed  CAS  Google Scholar 

  34. Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther. 2003;5:32–45.

    Article  PubMed  CAS  Google Scholar 

  35. Chen FH, Rousche KT, Tuan RS. Technology Insight: adult stem cells in cartilage regeneration and tissue engineering. Nat Clin Pract Rheumatol. 2006;2:373–82.

    Article  PubMed  CAS  Google Scholar 

  36. Huang Z, Ma T, Ren P-G, et al. Effects of orthopedic polymer particles on chemotaxis of macrophages and mesenchymal stem cells. J Biomed Mater Res A. 2010;94:1264–9.

    PubMed  Google Scholar 

  37. Goldring SR, Jasty M, Roelke MS, et al. Formation of a synovial-like membrane at the bone-cement interface. Its role in bone resorption and implant loosening after total hip replacement. Arthritis Rheum. 1986;29:836–42.

    Article  PubMed  CAS  Google Scholar 

  38. Goodman SB, Chin RC, Chiou SS, et al. A clinical-pathologic-biochemical study of the membrane surrounding loosened and nonloosened total hip arthroplasties. Clin Orthop Relat Res. 1989;244:182–7.

    Google Scholar 

  39. Elliott MJ, Vadas MA, Cleland LG, et al. IL-3 and granulocyte-macrophage colony-stimulating factor stimulate two distinct phases of adhesion in human monocytes. J Immunol (Baltimore, Md: 1950). 1990;145:167–76.

    CAS  Google Scholar 

  40. McInnes A, Rennick DM. Interleukin 4 induces cultured monocytes/macrophages to form giant multinucleated cells. J Exp Med. 1988;167:598–611.

    Article  PubMed  CAS  Google Scholar 

  41. McNally AK, Anderson JM. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am J Pathol. 1995;147:1487–99.

    PubMed  CAS  Google Scholar 

  42. al-Saffar N, Mah JT, Kadoya Y, Revell PA. Neovascularisation and the induction of cell adhesion molecules in response to degradation products from orthopaedic implants. Ann Rheum Dis. 1995;54:201–8.

    Article  PubMed  CAS  Google Scholar 

  43. Firkins PJ, Tipper JL, Saadatzadeh MR, et al. Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator. Biomed Mater Eng. 2001;11:143–57.

    PubMed  CAS  Google Scholar 

  44. Willert H-G, Buchhorn GH, Fayyazi A, et al. Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg Am. 2005;87:28–36.

    Article  PubMed  Google Scholar 

  45. Park Y-S, Moon Y-W, Lim S-J, et al. Early osteolysis following second-generation metal-on-metal hip replacement. J Bone Joint Surg Am. 2005;87:1515–21.

    Article  PubMed  Google Scholar 

  46. Davies AP, Willert HG, Campbell PA, et al. An unusual lymphocytic perivascular infiltration in tissues around contemporary metal-on-metal joint replacements. J Bone Joint Surg Am. 2005;87:18–27.

    Article  PubMed  CAS  Google Scholar 

  47. Witzleb W-C, Hanisch U, Kolar N, et al. Neo-capsule tissue reactions in metal-on-metal hip arthroplasty. Acta Orthop. 2007;78:211–20.

    Article  PubMed  Google Scholar 

  48. Hallab NJ, Anderson S, Stafford T, et al. Lymphocyte responses in patients with total hip arthroplasty. J Orthop Res. 2005;23:384–91.

    Article  PubMed  CAS  Google Scholar 

  49. Lalor PA, Revell PA. T-lymphocytes and titanium aluminium vanadium (TiAlV) alloy: evidence for immunological events associated with debris deposition. Clin Mater. 1993;12:57–62.

    Article  CAS  Google Scholar 

  50. Bainbridge JA, Revell PA, Al-Saffar N. Costimulatory molecule expression following exposure to orthopaedic implants wear debris. J Biomed Mater Res. 2001;54:328–34.

    Article  PubMed  CAS  Google Scholar 

  51. McKay GC, Macnair R, MacDonald C, Grant MH. Interactions of orthopaedic metals with an immortalized rat osteoblast cell line. Biomaterials. 1996;17:1339–44.

    Article  PubMed  CAS  Google Scholar 

  52. Fleury C, Petit A, Mwale F, et al. Effect of cobalt and chromium ions on human MG-63 osteoblasts in vitro: morphology, cytotoxicity, and oxidative stress. Biomaterials. 2006;27:3351–60.

    Article  PubMed  CAS  Google Scholar 

  53. Anissian L, Stark A, Dahlstrand H, et al. Cobalt ions influence proliferation and function of human osteoblast-like cells. Acta Orthop Scand. 2002;73:369–74.

    Article  PubMed  Google Scholar 

  54. Morais S, Sousa JP, Fernandes MH, Carvalho GS. In vitro biomineralization by osteoblast-like cells. I. Retardation of tissue mineralization by metal salts. Biomaterials. 1998;19:13–21.

    Article  PubMed  CAS  Google Scholar 

  55. Fernandes MH. Effect of stainless steel corrosion products on in vitro biomineralization. J Biomater Appl. 1999;14:113–68.

    PubMed  CAS  Google Scholar 

  56. MacQuarrie RA, Fang Chen Y, Coles C, Anderson GI. Wear-particle-induced osteoclast osteolysis: the role of particulates and mechanical strain. J Biomed Mater Res B Appl Biomater. 2004;69:104–12.

    Article  PubMed  Google Scholar 

  57. Nichols KG, Puleo DA. Effect of metal ions on the formation and function of osteoclastic cells in vitro. J Biomed Mater Res. 1997;35:265–71.

    Article  PubMed  CAS  Google Scholar 

  58. Manlapaz M, Maloney WJ, Smith RL. In vitro activation of human fibroblasts by retrieved titanium alloy wear debris. J Orthop Res. 1996;14:465–72.

    Article  PubMed  CAS  Google Scholar 

  59. Kovacs EJ, DiPietro LA. Fibrogenic cytokines and connective tissue production. FASEB J. 1994;8:854–61.

    PubMed  CAS  Google Scholar 

  60. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med. 2002;32:1102–15.

    Article  PubMed  CAS  Google Scholar 

  61. Wolf T, Kasemann R, Ottenwälder H. Molecular interaction of different chromium species with nucleotides and nucleic acids. Carcinogenesis. 1989;10:655–9.

    Article  PubMed  CAS  Google Scholar 

  62. Witkiewicz-Kucharczyk A, Bal W. Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Toxicol Lett. 2006;162:29–42.

    Article  PubMed  CAS  Google Scholar 

  63. Ren PG, Irani A, Huang Z, et al. Continuous infusion of UHMWPE particles induces increased bone macrophages and osteolysis. Clin Orthop Relat Res. 2011;469:113–22.

    Article  PubMed  Google Scholar 

  64. Ren PG, Lee SW, Biswal S, Goodman SB. Systemic trafficking of macrophages induced by bone cement particles in nude mice. Biomaterials. 2008;29:4760–5.

    Article  PubMed  CAS  Google Scholar 

  65. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29:313–26.

    Article  PubMed  CAS  Google Scholar 

  66. Menten P, Wuyts A, Van Damme J. Macrophage inflammatory protein-1. Cytokine Growth Factor Rev. 2002;13:455–81.

    Article  PubMed  CAS  Google Scholar 

  67. Hallab N, Merritt K, Jacobs JJ. Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am. 2001;83-A:428–36.

    PubMed  CAS  Google Scholar 

  68. Bar-Or D, Curtis G, Rao N, et al. Characterization of the Co(2+) and Ni(2+) binding amino-acid residues of the N-terminus of human albumin. An insight into the mechanism of a new assay for myocardial ischemia. Eur J Biochem/FEBS. 2001;268:42–7.

    Article  CAS  Google Scholar 

  69. Clodfelder BJ, Emamaullee J, Hepburn DD, et al. The trail of chromium(III) in vivo from the blood to the urine: the roles of transferrin and chromodulin. J Biol Inorg Chem. 2001;6:608–17.

    Article  PubMed  CAS  Google Scholar 

  70. Eitinger T, Suhr J, Moore L, Smith JAC. Secondary transporters for nickel and cobalt ions: theme and variations. Biometals. 2005;18:399–405.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Gibon M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Gibon, E., Goodman, S.B. (2012). Influence of Wear Particles on Local and Systemic Immune System. In: Trebše, R. (eds) Infected Total Joint Arthroplasty. Springer, London. https://doi.org/10.1007/978-1-4471-2482-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2482-5_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2481-8

  • Online ISBN: 978-1-4471-2482-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics