Skip to main content

Parallel Solution of Sparse Linear Systems

  • Chapter
High-Performance Scientific Computing

Abstract

Many simulations in science and engineering give rise to sparse linear systems of equations. It is a well known fact that the cost of the simulation process is almost always governed by the solution of the linear systems especially for large-scale problems. The emergence of extreme-scale parallel platforms, along with the increasing number of processing cores available on a single chip pose significant challenges for algorithm development. Machines with tens of thousands of multicore processors place tremendous constraints on the communication as well as memory access requirements of algorithms. The increase in number of cores in a processing unit without an increase in memory bandwidth aggravates an already significant memory bottleneck. Sparse linear algebra kernels are well-known for their poor processor utilization. This is a result of limited memory reuse, which renders data caching less effective. In view of emerging hardware trends, it is necessary to develop algorithms that strike a more meaningful balance between memory accesses, communication, and computation. Specifically, an algorithm that performs more floating point operations at the expense of reduced memory accesses and communication is likely to yield better performance. We present two alternative variations of DS factorization based methods for solution of sparse linear systems on parallel computing platforms. Performance comparisons to traditional LU factorization based parallel solvers are also discussed. We show that combining iterative methods with direct solvers and using DS factorization, one can achieve better scalability and shorter time to solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amestoy, P.R., Duff, I.S.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000)

    Article  MATH  Google Scholar 

  2. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amestoy, P.R., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

    Article  MathSciNet  Google Scholar 

  4. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammerling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  5. Barnard, S.T., Pothen, A., Simon, H.: A spectral algorithm for envelope reduction of sparse matrices. Numer. Linear Algebra Appl. 2(4), 317–334 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berry, M.W., Sameh, A.: Multiprocessor schemes for solving block tridiagonal linear systems. Int. J. Supercomput. Appl. 1(3), 37–57 (1988)

    Article  Google Scholar 

  7. Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.: ScaLAPACK User’s Guide. SIAM, Philadelphia (1997). See also www.netlib.org/scalapack

    Book  Google Scholar 

  8. Davis, T.A.: University of Florida sparse matrix collection. NA Digest (1997)

    Google Scholar 

  9. Dongarra, J.J., Sameh, A.H.: On some parallel banded system solvers. Parallel Comput. 1(3), 223–235 (1984)

    Article  Google Scholar 

  10. Duff, I., Koster, J.: On algorithms for permuting large entries to the diagonal of a sparse matrix (1999). citeseer.comp.nus.edu.sg/duff99algorithms.html

  11. Duff, I.S., Koster, J.: The design and use of algorithms for permuting large entries to the diagonal of sparse matrices. SIAM J. Matrix Anal. Appl. 20(4), 889–901 (1999). citeseer.ist.psu.edu/duff97design.html

    Article  MathSciNet  MATH  Google Scholar 

  12. Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23(2), 298–305 (1973)

    MathSciNet  Google Scholar 

  13. Gupta, A.: Recent advances in direct methods for solving unsymmetric sparse systems of linear equations. ACM Trans. Math. Softw. 28(3), 301–324 (2002). http://doi.acm.org/10.1145/569147.569149

    Article  MATH  Google Scholar 

  14. Gupta, A., Koric, S., George, T.: Sparse matrix factorization on massively parallel computers. In: SC’09 USB Key. ACM/IEEE, Portland, p. A1 (2009)

    Google Scholar 

  15. He, X., Zha, H., Ding, C.H., Simon, H.D.: Web document clustering using hyperlink structures. Comput. Stat. Data Anal. 41(1), 19–45 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Higham, D.J., Kalna, G., Kibble, M.: Spectral clustering and its use in bioinformatics. J. Comput. Appl. Math. 204(1), 25–37 (2007). http://www.sciencedirect.com/science/article/B6TYH-4K3D33V-3/2/204acbb72a44113bdd062272c3513921. Special issue dedicated to Professor Shinnosuke Oharu on the occasion of his 65th birthday

    Article  MathSciNet  MATH  Google Scholar 

  17. HSL: A collection of Fortran codes for large-scale scientific computation (2004). See http://www.cse.scitech.ac.uk/nag/hsl/

  18. Hu, Y., Scott, J.: HSL_MC73: a fast multilevel Fiedler and profile reduction code. Technical Report RAL-TR-2003-036 (2003)

    Google Scholar 

  19. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48, 96–129 (1998)

    Article  Google Scholar 

  20. Kundu, S., Sorensen, D., Philiphsi, G.N.J.: Automatic domain decomposition of proteins by a Gaussian network model. Proteins 57(4), 725–733 (2004)

    Article  Google Scholar 

  21. Lawrie, D.H., Sameh, A.H.: The computation and communication complexity of a parallel banded system solver. ACM Trans. Math. Softw. 10(2), 185–195 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, X., Demmel, J.W.: SuperLU DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM Trans. Math. Softw. 29, 110–140 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Manguoglu, M.: A parallel hybrid sparse linear system solver. In: Computational Electromagnetics International Workshop, 2009. CEM 2009, pp. 38–43 (2009)

    Chapter  Google Scholar 

  24. Manguoglu, M.: A domain-decomposing parallel sparse linear system solver. J. Comput. Appl. Math. 236(3), 319–325 (2011)

    Article  MATH  Google Scholar 

  25. Manguoglu, M., Cox, E., Saied, F., Sameh, A.: TRACEMIN-fiedler: A parallel algorithm for computing the Fiedler vector. In: High Perf. Comput. Comput. Sci.–VECPAR 2010, pp. 449–455 (2011)

    Chapter  Google Scholar 

  26. Manguoglu, M., Koyuturk, M., Sameh, A., Grama, A.: Weighted matrix ordering and parallel banded preconditioners for iterative linear system solvers. SIAM J. Sci. Comput. 32(3), 1201–1216 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Manguoglu, M., Sameh, A., Schenk, O.: Pspike: A parallel hybrid sparse linear system solver. In: Euro-Par 2009 Parallel Processing, pp. 797–808 (2009)

    Chapter  Google Scholar 

  28. Manguoglu, M., Takizawa, K., Sameh, A., Tezduyar, T.: Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int. J. Numer. Methods Fluids 65, 135–149 (2011). doi:10.1002/fld.2415

    Article  MathSciNet  MATH  Google Scholar 

  29. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems, vol. 14, pp. 849–856. MIT Press, Cambridge (2001)

    Google Scholar 

  30. Polizzi, E., Sameh, A.H.: A parallel hybrid banded system solver: the SPIKE algorithm. Parallel Comput. 32(2), 177–194 (2006)

    Article  MathSciNet  Google Scholar 

  31. Polizzi, E., Sameh, A.H.: SPIKE: A parallel environment for solving banded linear systems. Comput. Fluids 36(1), 113–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Qiu, H., Hancock, E.R.: Graph matching and clustering using spectral partitions. Pattern Recognit. 39(1), 22–34 (2006)

    Article  Google Scholar 

  34. Chen, S.C., Kuck, D.J., Sameh, A.H.: Practical parallel band triangular system solvers. ACM Trans. Math. Softw. 4(3), 270–277 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sameh, A., Tong, Z.: The trace minimization method for the symmetric generalized eigenvalue problem. J. Comput. Appl. Math. 123(1-2), 155–175 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sameh, A.H., Kuck, D.J.: On stable parallel linear system solvers. J. ACM 25(1), 81–91 (1978)

    MathSciNet  MATH  Google Scholar 

  37. Sameh, A.H., Sarin, V.: Hybrid parallel linear system solvers. Int. J. Comput. Fluid Dyn. 12, 213–223 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sameh, A.H., Wisniewski, J.A.: A trace minimization algorithm for the generalized eigenvalue problem. SIAM J. Numer. Anal. 19(6), 1243–1259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 20(3), 475–487 (2004)

    Article  Google Scholar 

  40. Schenk, O., Gärtner, K.: On fast factorization pivoting methods for sparse symmetric indefinite systems. Electron. Trans. Numer. Anal. 23, 158–179 (2006)

    MathSciNet  MATH  Google Scholar 

  41. Schenk, O., Manguoglu, M., Sameh, A., Christian, M., Sathe, M.: Parallel scalable PDE-constrained optimization: antenna identification in hyperthermia cancer treatment planning. Comput. Sci. Res. Dev. 23(3–4) (2009)

    Google Scholar 

  42. Shepherd, S.J., Beggs, C.B., Jones, S.: Amino acid partitioning using a Fiedler vector model. Eur. Biophys. J. 37(1), 105–109 (2007)

    Article  Google Scholar 

  43. van der Vorst, H.A.: BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Ahmed Sameh, Ananth Grama, Faisal Saied, Eric Cox, Kenji Takizawa, Madan Sathe, Mehmet Koyuturk, Olaf Schenk, and Tayfun Tezduyar for their help and many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Manguoglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Manguoglu, M. (2012). Parallel Solution of Sparse Linear Systems. In: Berry, M., et al. High-Performance Scientific Computing. Springer, London. https://doi.org/10.1007/978-1-4471-2437-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2437-5_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2436-8

  • Online ISBN: 978-1-4471-2437-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics