Skip to main content

Analysis and Control of an SEIR Epidemic System with Nonlinear Transmission Rate

  • Chapter
  • First Online:
Book cover Complexity, Analysis and Control of Singular Biological Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 421))

Introduction

Mathematical models describing the population dynamics of infectious diseases have been playing an important role in better understanding epidemiological patterns and disease control for a long time. In order to predict the spread of infectious disease among regions, many epidemic models have been proposed and analyzed in recent years (see [7, 4, 22, 25, 36, 19, 20]). However, most of the literature researched on epidemic systems (see [36, 24, 8, 13]) assumes that the disease incubation is negligible that, once infected, each susceptible individual (in class S) becomes infectious instantaneously (in class I) and later recovers (in class R) with a permanent or temporary acquired immunity. The model based on these assumptions is customarily called an SIR (susceptible-infectious-recovered) or SIRS (susceptible-infectious-recovered-susceptible) system (see [10, 9]). Many diseases such as measles, severe acute respiratory syndromes (SARS), and so on, however, incubate inside the hosts for a period of time before the hosts become infectious. So the systems that are more general than SIR or SIRS types need to be studied to investigate the role of incubation in disease transmission. We may assume that a susceptible individual first goes through a latent period (and is said to become exposed or in the class E) after infection before becoming infectious. Thus, the resulting models are of SEIR (susceptible-exposed-infectious-recovered) or SEIRS (susceptible-exposed-infectious-recovered-susceptible) types, respectively, depending on whether the acquired immunity is permanent or not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Broer, H., Naudot, V., Roussarie, R., Saleh, K.: Dynamics of a predator-prey model with non- monotonic response function. Disc. Cont. Dyn. Syst. A 18, 221–251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Broer, H., Simo, C., Vitolo, R.: Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance bubble. Phy. D 237, 1773–1799 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Broer, H., Simo, C., Vitolo, R.: The Hopf-saddle-node bifurcation for fixed points of 3D- diffeomorphisms: The Arnol’d resonance web. Bul. Bel. Math. Soc. Ste. 15, 769–787 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Chen, L.S., Chen, J.: Nonlinear Biologic Dynamic Systems. Science Press, Beijing (1993)

    Google Scholar 

  5. Cooke, K.L., Driessche, P.V.: Analysis of an SEIRS epidemic model with two delays. J. Math. Bio. 35, 240–260 (1996)

    Article  MATH  Google Scholar 

  6. Dai, L.: Singular Control Systems. Springer, Heidelberg (1998)

    Google Scholar 

  7. Fan, M., Michael, Y.L., Wang, K.: Global stability of an SEIS epidemic model with recruitment and a varying total population size. Math. Bio. 170, 199–208 (2001)

    Article  MATH  Google Scholar 

  8. Ghoshal, G., Sander, L.M., Sokolov, I.M.: SIS epidemics with household structure: The self-consistent field method. Math. Bio. 190, 71–85 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Glendinning, P., Perry, L.P.: Melnikov analysis of chaos in a simple epidemiological model. J. Math. Biol. 35, 359–373 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Greenhalgh, D., Khan, Q.J.A., Lewis, F.I.: Hopf bifurcation in two SIRS density dependent epidemic models. Math. Comp. Model. 39, 1261–1283 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Greenhalgh, D.: Hopf bifurcation in epidemic models with a latent period and non-permanent immunity. Math. Compu. Model 25, 85–107 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations. Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  13. Hilker, F.M., Michel, L., Petrovskii, S.V., Malchow, H.: A diffusive SI model with Allee effect and application to FIV. Math. Bio. 206, 61–80 (2007)

    Article  MATH  Google Scholar 

  14. Isidori, A.: Nonlinear Control System. Springer, Berlin (1985)

    Google Scholar 

  15. Jia, Q.: Hyperchaos generated from the Lorenz chaotic system and its control. Phy. Lett. A 366, 217–222 (2007)

    Article  MATH  Google Scholar 

  16. Jiang, M.J., Chen, C.L., Chen, C.K.: Sliding mode control of hyperchaos in Rossler systems. Chaos Soli. Frac. 14, 1465–1476 (2002)

    Article  Google Scholar 

  17. Jyi, M., Chen, C.L., Chen, C.K.: Sliding mode control of hyperchaos in Rossler systems. Chaos Soli. Frac. 14, 1465–1476 (2002)

    Article  MATH  Google Scholar 

  18. Kamo, M., Sasaki, A.: The effect of cross-immunity and seasonal forcing in a multi-strain epidemic model. Phys. D 165, 228–241 (2002)

    Article  MATH  Google Scholar 

  19. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. London A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  20. Kot, M.: Elements of Mathematical Biology. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  21. Kuznetsov, Y.A., Piccardi, C.: Bifurcation analysis of periodic SEIR and SIR epidemic models. Math. Bio. 32, 109–121 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, X.Z., Gupur, G., Zhu, G.T.: Threshold and stability results for an age-structured SEIR epidemic model. Comp. Math. Appl. 42, 883–907 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, W.M., Hethcote, H.W., Levin, S.A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Bio. 25, 359–380 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu, Z.H., Liu, X.N., Chen, L.S.: Hopf bifurcation of nonlinear incidence rates SIR epidemiological models with stage structure. Comm. Nonl. Sci. Num. Sim. 6, 205–209 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. May, R.M., Oster, G.F.: Bifurcation and dynamic complexity in simple ecological models. Amer. Nat. 110, 573–599 (1976)

    Article  Google Scholar 

  26. Michael, Y.L., Graef, J.R., Wang, L.C., Karsai, J.: Global dynamics of an SEIR model with varying total population size. Math. Bio. 160, 191–213 (1999)

    Article  MATH  Google Scholar 

  27. Olsen, L.F., Schaffer, W.M.: Chaos versus periodicity: Alternative hypotheses for childhood epidemics. Science 249, 499–504 (1990)

    Article  Google Scholar 

  28. Rafikov, M., Balthazar, J.M.: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. Commu. Non. Sci. Num. Sim. 13, 1246–1255 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rosehart, W.D., Canizares, C.A.: Bifurcation analysis of various power system models. Elec. Pow. Ene. Syst. 21, 171–182 (1999)

    Article  Google Scholar 

  30. Sun, C.J., Lin, Y.P., Tang, S.P.: Global stability for a special SEIR epidemic model with nonlinear incidence rates. Chaos Soli. Frac. 33, 290–297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Venkatasubramanian, V., Schattler, H., Zaborszky, J.: Analysis of local bifurcation mechanisms in large differential-algebraic systems such as the power system. In: Proc. 32nd Conf. Deci. Cont., vol. 4, pp. 3727–3733 (1993)

    Google Scholar 

  32. Xu, W.B., Liu, H.L., Yu, J.Y., Zhu, G.T.: Stability results for an age-structured SEIR epidemic model. J. Sys. Sci. Inf. 3, 635–642 (2005)

    Google Scholar 

  33. Wang, J., Chen, C.: Nonlinear control of differential algebraic model in power systems. Proc. CSEE 21, 15–18 (2001)

    MATH  Google Scholar 

  34. Yan, Z.Y., Yu, D.: Hyperchaos synchronization and control on a new hyperchaotic attractor. Chaos Soli. Frac. 35, 333–345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yau, H.T., Yan, J.J.: Robust controlling hyperchaos of the Rossler system subject to input nonlinearities by using sliding mode control. Chaos Soli. Frac. 33, 1767–1776 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zeng, G.Z., Chen, L.S., Sun, L.H.: Complexity of an SIRS epidemic dynamics model with impulsive vaccination control. Chaos Soli. Frac. 26, 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, H., Ma, X.K., Li, M., Zou, J.K.: Controlling and tracking hyperchaotic Rossler system via active backstepping design. Chaos Soli. Frac. 26, 353–361 (2005)

    Article  MATH  Google Scholar 

  38. Zhang, J.S.: Economy cybernetics of singular systems. Tsinghua University Press, Beijing (1990)

    Google Scholar 

  39. Zhang, Y., Zhang, Q.L., Zhao, L.C., Liu, P.Y.: Tracking control of chaos in singular biological economy systems. J. Nor. Uni. 28, 157–164 (2007)

    MathSciNet  Google Scholar 

  40. Zhang, Y., Zhang, Q.L.: Chaotic control based on descriptor bioeconomic systems. Cont. Deci. 22, 445–452 (2007)

    Google Scholar 

  41. Zhou, X.B., Wu, Y., Li, Y., Xue, H.Q.: Adaptive control and synchronization of a novel hyperchaotic system with uncertain parameters. Appl. Math. Compu. 203, 80–85 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingling Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Zhang, Q., Liu, C., Zhang, X. (2012). Analysis and Control of an SEIR Epidemic System with Nonlinear Transmission Rate. In: Complexity, Analysis and Control of Singular Biological Systems. Lecture Notes in Control and Information Sciences, vol 421. Springer, London. https://doi.org/10.1007/978-1-4471-2303-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2303-3_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2302-6

  • Online ISBN: 978-1-4471-2303-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics