Skip to main content

Implementation of Impairment-Based Neurorehabilitation Devices and Technologies Following Brain Injury

  • Chapter
  • First Online:
  • 1703 Accesses

Abstract

The implementation of electromechanical devices for the quantification and treatment of movement impairments (abnormal muscle synergies, spasticity, and paralysis) resulting from brain injury is the main topic in this chapter. The specific requirements for the use of robotic devices to quantify these impairments as well as treat them effectively are discussed. A case is made that electromechanical devices not only generate a vehicle to augment treatment intensity but more importantly allow for the precise measurement and treatment of specific impairments using scientifically underpinned approaches. Acceptance of these new technologies is dependent on proof of their effectiveness in treating movement impairments and on future clinical trial evidence for accompanying improvements in activities of daily living and quality of life. Furthermore, the need of a concerted effort to simplify these new technologies, once essential treatment ingredients have been determined, is seen as being a key component for their acceptance in the clinic on a large scale. Finally, it is crucial that we demonstrate that electromechanical technologies are indeed more effective in delivering rehabilitative care, by reducing required treatment time in expensive clinics while maintaining, and even improving, functional outcomes. This is a requirement for future technology development and acceptance in the clinic and at home, especially in a health care environment where rehabilitation costs become more and more prohibitive.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Prange GB et al. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43:171–84.

    Article  PubMed  Google Scholar 

  2. Kwakkel G et al. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22:111–21.

    PubMed  Google Scholar 

  3. Mehrholz J et al. Electromechanical and robot-assisted Arm training for improving arm function and activities of daily living after stroke. Stroke. 2009;40:e392–3.

    Article  Google Scholar 

  4. Sukal TM et al. Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications. Exp Brain Res. 2007;183:215–23.

    Article  PubMed  Google Scholar 

  5. Koo TK et al. Joint position dependence of weakness during maximum isometric voluntary contractions in subjects with hemiparesis. Arch Phys Med Rehabil. 2003;84:1380–6.

    Article  PubMed  Google Scholar 

  6. Beer RF et al. Impact of gravity loading on post-stroke reaching and its relationship to weakness. Muscle Nerve. 2007;36:242–50.

    Article  PubMed  Google Scholar 

  7. Burne JA et al. The spasticity paradox: movement disorder or disorder of resting limbs? J Neurol Neurosurg Psychiatry. 2005;76:47–54.

    Article  PubMed  CAS  Google Scholar 

  8. Schmit BD. Mechanical measures of spasticity in stroke. Top Stroke Rehabil. 2001;8:13–26.

    Article  PubMed  CAS  Google Scholar 

  9. Schmit BD et al. Reflex torque response to movement of the spastic elbow: theoretical analyses and implications for quantification of spasticity. Ann Biomed Eng. 1999;27:815–29.

    Article  PubMed  CAS  Google Scholar 

  10. Schmit BD et al. Stretch reflex adaptation in elbow flexors during repeated passive movements in unilateral brain-injured patients. Arch Phys Med Rehabil. 2000;81:269–78.

    Article  PubMed  CAS  Google Scholar 

  11. Powers RK et al. Quantitative relations between hypertonia and stretch reflex threshold in spastic hemiparesis. Ann Neurol. 1988;23:115–24.

    Article  PubMed  CAS  Google Scholar 

  12. Powers RK et al. Stretch reflex dynamics in spastic elbow flexor muscles. Ann Neurol. 1989;25:32–42.

    Article  PubMed  CAS  Google Scholar 

  13. Trumbower RD et al. Contributions of altered stretch reflex coordination to arm impairments following stroke. J Neurophysiol. 2010;104:3612–24.

    Article  PubMed  Google Scholar 

  14. de Vlugt E et al. The relation between neuromechanical parameters and Ashworth score in stroke patients. J Neuroeng Rehabil. 2010;7:35.

    Article  PubMed  Google Scholar 

  15. Meskers CG et al. Muscle weakness and lack of reflex gain adaptation predominate during post-stroke posture control of the wrist. J Neuroeng Rehabil. 2009;6:29.

    Article  PubMed  Google Scholar 

  16. Ellis MD et al. Augmenting clinical evaluation of hemiparetic arm movement with a laboratory-based quantitative measurement of kinematics as a function of limb loading. Neurorehabil Neural Repair. 2008;22:321–9.

    PubMed  Google Scholar 

  17. Brunnstrom S. Movement therapy in hemiplegia: a neurophysiological approach. 1st ed. New York: Medical Dept., Harper & Row; 1970.

    Google Scholar 

  18. Foester O. Motorische Felder und Bahnen. In: Bumke O, Foester O, editors. Handbuch der Neurologie. Berlin: Springer; 1933.

    Google Scholar 

  19. Twitchell TE. The restoration of motor function following hemiplegia in man. Brain. 1951;74:443–80.

    Article  PubMed  CAS  Google Scholar 

  20. Dewald JP et al. Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain. 1995;118(Pt 2):495–510.

    Article  PubMed  Google Scholar 

  21. Beer R, Dewald J. Task-dependent weakness at the elbow in patients with hemiparesis. Arch Phys Med Rehabil. 1999;80:766–72.

    Article  PubMed  CAS  Google Scholar 

  22. Dewald JP, Beer RF. Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve. 2001;24:273–83.

    Article  PubMed  CAS  Google Scholar 

  23. Dewald JP et al. Upper-limb discoordination in hemiparetic stroke: implications for neurorehabilitation. Top Stroke Rehabil. 2001;8:1–12.

    PubMed  CAS  Google Scholar 

  24. Beer RF et al. Target-dependent differences between free and constrained arm movements in chronic hemiparesis. Exp Brain Res. 2004;156:458–70.

    Article  PubMed  Google Scholar 

  25. Beer RF et al. Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics. Exp Brain Res. 2000;131:305–19.

    Article  PubMed  CAS  Google Scholar 

  26. Colebatch JG, Gandevia SC. The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain. 1989;112(Pt 3):749–63.

    Article  PubMed  Google Scholar 

  27. Lang CE et al. Recovery of grasp versus reach in people with hemiparesis poststroke. Neurorehabil Neural Repair. 2006;20:444–54.

    Article  PubMed  Google Scholar 

  28. Turton A et al. Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr Clin Neurophysiol. 1996;101:316–28.

    Article  PubMed  CAS  Google Scholar 

  29. Miller LC et al. A wrist and finger force sensor module for use during movements of the upper limb in chronic hemiparetic stroke. IEEE Trans Biomed Eng. 2009;56:2312–7.

    Article  PubMed  Google Scholar 

  30. Lance JW. The control of muscle tone, reflexes, and movement: Robert Wartenberg Lecture. Neurology. 1980;30:1303–13.

    Article  PubMed  CAS  Google Scholar 

  31. Ada L et al. Does spasticity contribute to walking dysfunction after stroke? J Neurol Neurosurg Psychiatry. 1998;64:628–35.

    Article  PubMed  CAS  Google Scholar 

  32. Ibrahim IK et al. Stretch-induced electromyographic activity and torque in spastic elbow muscles. Differential modulation of reflex activity in passive and active motor tasks. Brain. 1993;116(Pt 4):971–89.

    Article  PubMed  Google Scholar 

  33. Meyer M, Adorjani C. Tonic stretch reflex for quantification of pathological muscle tone. In: Young RR, Feldman RG, Koella WP, CIBA-GEIGY Corporation, editors. Spasticity: disordered motor control, vol. xviii. Chicago: Year Book Medical Publishers; 1980. p. 310–30.

    Google Scholar 

  34. Meyer M, Adorjani C. Quantification of the effects of muscle relaxant drugs in man by tonic stretch reflex. Adv Neurol. 1983;39:997–1011.

    PubMed  CAS  Google Scholar 

  35. Neilson PD. Interaction between voluntary contraction and tonic stretch reflex transmission in normal and spastic patients. J Neurol Neurosurg Psychiatry. 1972;35:853–60.

    Article  PubMed  CAS  Google Scholar 

  36. Brown TI et al. Electromyographic responses to imposed sinusoidal movement of the human thumb. J Physiol. 1982;332:87–99.

    PubMed  CAS  Google Scholar 

  37. Yeo W et al. Tonic stretch reflexes in older able-bodied people. Electromyogr Clin Neurophysiol. 1998;38:273–8.

    PubMed  CAS  Google Scholar 

  38. Gottlieb GL, Agarwal GC. Dependence of human ankle compliance on joint angle. J Biomech. 1978;11:177–81.

    Article  PubMed  CAS  Google Scholar 

  39. Dietz V et al. Reflex activity and muscle tone during elbow movements in patients with spastic paresis. Ann Neurol. 1991;30:767–79.

    Article  PubMed  CAS  Google Scholar 

  40. Lee WA et al. Absence of stretch reflex gain enhancement in voluntarily activated spastic muscle. Exp Neurol. 1987;98:317–35.

    Article  PubMed  CAS  Google Scholar 

  41. Sinkjaer T et al. Non-reflex and reflex mediated ankle joint stiffness in multiple sclerosis patients with spasticity. Muscle Nerve. 1993;16:69–76.

    Article  PubMed  CAS  Google Scholar 

  42. Wolf SL et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296:2095–104.

    Article  PubMed  CAS  Google Scholar 

  43. Bonifer NM et al. Constraint-induced movement therapy after stroke: efficacy for patients with minimal upper-extremity motor ability. Arch Phys Med Rehabil. 2005;86:1867–73.

    Article  PubMed  Google Scholar 

  44. Ellis MD et al. Modifiability of abnormal isometric elbow and shoulder joint torque coupling after stroke. Muscle Nerve. 2005;32:170–8.

    Article  PubMed  Google Scholar 

  45. Ellis MD et al. Progressive shoulder abduction loading is a crucial element of arm rehabilitation in chronic stroke. Neurorehabil Neural Repair. 2009;23:862–9.

    Article  PubMed  Google Scholar 

  46. Ellis MD et al. Impairment-based 3-D robotic intervention improves upper extremity work area in chronic stroke: targeting abnormal joint torque coupling with progressive shoulder abduction loading. IEEE Trans Robot. 2009;25:549–55.

    Article  PubMed  Google Scholar 

  47. Burgar CG et al. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev. 2000;37:663–73.

    PubMed  CAS  Google Scholar 

  48. Fazekas G et al. A novel robot training system designed to supplement upper limb physiotherapy of patients with spastic hemiparesis. Int J Rehabil Res. 2006;29:251–4.

    Article  PubMed  Google Scholar 

  49. Frisoli A, et al. Arm rehabilitation with a robotic exoskeleton in virtual reality. In: IEEE 10th international conference on rehabilitation robotics. ICORR 2007. Noordwijk; 2007.

    Google Scholar 

  50. Hesse S et al. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003;84:915–20.

    Article  PubMed  Google Scholar 

  51. Krebs HI et al. Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility. Technol Health Care. 1999;7:419–23.

    PubMed  CAS  Google Scholar 

  52. Masiero S et al. A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs. Aging Clin Exp Res. 2006;18:531–5.

    PubMed  Google Scholar 

  53. Nef T et al. ARMin: a robot for patient-cooperative arm therapy. Med Biol Eng Comput. 2007;45:887–900.

    Article  PubMed  Google Scholar 

  54. Reinkensmeyer DJ et al. Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J Rehabil Res Dev. 2000;37:653–62.

    PubMed  CAS  Google Scholar 

  55. Broeren J et al. Virtual rehabilitation in an activity centre for community-dwelling persons with stroke. The possibilities of 3-dimensional computer games. Cerebrovasc Dis. 2008;26:289–96.

    Article  PubMed  Google Scholar 

  56. Fischer HC et al. Hand rehabilitation following stroke: a pilot study of assisted finger extension training in a virtual environment. Top Stroke Rehabil. 2007;14:1–12.

    Article  PubMed  Google Scholar 

  57. Holden MK et al. Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke. IEEE Trans Neural Syst Rehabil Eng. 2007;15:36–42.

    Article  PubMed  Google Scholar 

  58. Housman SJ et al. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009;23:505–14.

    Article  PubMed  Google Scholar 

  59. Kuttuva M et al. The Rutgers Arm, a rehabilitation system in virtual reality: a pilot study. Cyberpsychol Behav. 2006;9:148–51.

    Article  PubMed  Google Scholar 

  60. Nef T et al. Effects of arm training with the robotic device ARMin I in chronic stroke: three single cases. Neurodegener Dis. 2009;6:240–51.

    Article  PubMed  Google Scholar 

  61. Reinkensmeyer DJ et al. Web-based telerehabilitation for the upper extremity after stroke. IEEE Trans Neural Syst Rehabil Eng. 2002;10:102–8.

    Article  PubMed  Google Scholar 

  62. Sivak M et al. Design of a low cost multiple user virtual environment for rehabilitation (MUVER) of patients with stroke. Stud Health Technol Inform. 2009;142:319–24.

    PubMed  Google Scholar 

  63. Stewart JC et al. Intervention to enhance skilled arm and hand movements after stroke: a feasibility study using a new virtual reality system. J Neuroeng Rehabil. 2007;4:21.

    Article  PubMed  Google Scholar 

  64. van der Kooij H et al. Preliminary results of training with gravity compensation of the arm in chronic stroke survivors. Conf Proc IEEE Eng Med Biol Soc. 2009;1:2426–9.

    Google Scholar 

  65. Broeren J et al. Virtual reality and haptics as a training device for movement rehabilitation after stroke: a single-case study. Arch Phys Med Rehabil. 2004;85:1247–50.

    Article  PubMed  Google Scholar 

  66. van Peppen RP et al. The development of a clinical practice stroke guideline for physiotherapists in the Netherlands: a systematic review of available evidence. Disabil Rehabil. 2007;29:767–83.

    Article  PubMed  Google Scholar 

  67. Van Peppen RP et al. The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil. 2004;18:833–62.

    Article  PubMed  Google Scholar 

  68. Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004;3:528–36.

    Article  PubMed  Google Scholar 

  69. Woldag H, Hummelsheim H. Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients: a review. J Neurol. 2002;249:518–28.

    Article  PubMed  Google Scholar 

  70. Adamovich SV, et al. A virtual reality based exercise system for hand rehabilitation post-stroke: transfer to function. In: Engineering in medicine and biology society. IEMBS ’04. 26th annual international conference of the IEEE; San Francisco, CA, USA 2004. p. 4936–4939.

    Google Scholar 

  71. Merians AS et al. Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil Neural Repair. 2006;20:t252–67.

    Article  PubMed  Google Scholar 

  72. Piron L et al. Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. J Rehabil Med. 2009;41:1016–102.

    Article  PubMed  Google Scholar 

  73. Frisoli A et al. Robotic assisted rehabilitation in virtual reality with the L-EXOS. Stud Health Technol Inform. 2009;145:40–54.

    PubMed  Google Scholar 

  74. Hesse S et al. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005;36:1960–6.

    Article  PubMed  CAS  Google Scholar 

  75. Kahn LE et al. Robot-assisted reaching exercise ­promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil. 2006;3:12.

    Article  PubMed  Google Scholar 

  76. Lum PS et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83:952–9.

    Article  PubMed  Google Scholar 

  77. Macclellan LR et al. Robotic upper-limb neurorehabilitation in chronic stroke patients. J Rehabil Res Dev. 2005;42:717–22.

    Article  PubMed  Google Scholar 

  78. Staubli P et al. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J Neuroeng Rehabil. 2009;6:46.

    Article  PubMed  Google Scholar 

  79. Housman S, et al. Arm-training with T-WREX after chronic stroke: preliminary results of a randomized controlled trial. In: ICORR 2007 – IEEE 10th international conference on rehabilitaton robotics. Noordwijk; 2007.

    Google Scholar 

  80. Yao J et al. Cortical overlap of joint representations contributes to the loss of independent joint control following stroke. Neuroimage. 2009;45:490–9.

    Article  PubMed  Google Scholar 

  81. Henderson A et al. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 2007;14:52–61.

    Article  PubMed  Google Scholar 

  82. Lucca LF. Virtual reality and motor rehabilitation of the upper limb after stroke: a generation of progress? J Rehabil Med. 2009;41:1003–100.

    Article  PubMed  Google Scholar 

  83. Mumford N, Wilson PH. Virtual reality in acquired brain injury upper limb rehabilitation: evidence-based evaluation of clinical research. Brain Inj. 2009;23:179–91.

    Article  PubMed  Google Scholar 

  84. Acosta AM et al. A pilot study to test the effectiveness of a video game on reaching performance in stroke. J Rehabil Res Dev. 2011;48(4):431–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius P. A. Dewald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Dewald, J.P.A., Ellis, M.D., Acosta, A.M., McPherson, J.G., Stienen, A.H.A. (2012). Implementation of Impairment-Based Neurorehabilitation Devices and Technologies Following Brain Injury. In: Dietz, V., Nef, T., Rymer, W. (eds) Neurorehabilitation Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2277-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2277-7_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2276-0

  • Online ISBN: 978-1-4471-2277-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics