Skip to main content

Proteomic Studies in Low-Grade Gliomas: What Have They Informed About Pathophysiology?

  • Chapter
  • First Online:
Diffuse Low-Grade Gliomas in Adults

Abstract

The study of normal, aberrant, and dysregulated proteins (proteomics) is now becoming an established technique in biological research. Proteomics has been widely applied in biological investigations of systemic cancers and also in high-grade gliomas (HGGs). However, relatively little work has been done on questions evaluating biological aspects of low-grade gliomas (LGGs). In this chapter, the proteomic literature on LGGs is critically and systematically reviewed. Protein lists from individual studies are summarized, and differences between “control” brain tissue and LGG, LGG and HGGs, LGGs with and without 1p/19q deletions, and the impact of IDH1 deletions are evaluated. Web-based bioinformatics tools, IPA and DAVID, are also used to assess protein-protein interactions between proteins differentially expressed in LGGs. Two highly significant and important functional protein networks are identified. One in silico network reveals underlying differences between LGG and control brain, and the other reveals underlying differences between HGGs and LGGs. The roles of cell proliferation, apoptosis, and aberrant subcellular processes are highlighted. In addition, the nascent literature on 1p/19q, and IDH1 deletions is reviewed. The findings from these studies show that systematic analysis of proteomic data in LGGs is much more informative than data derived from single studies. The lack of consistent proteomic differences identified between the various studies also highlights problems in proteomic methodologies and investigative study design. The results from this review provide novel insights into LGG biology and give some direction for focus of future studies.

Gerth and Deighton are contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GBM:

Glioblastoma multiforme

HGG:

High-grade glioma

LGG:

Low-grade glioma

References

  1. Persson O, Brynnel U, Levander F, Widegren B, Salford LG, Krogh M. Proteomic expression analysis and comparison of protein and mRNA expression profiles in human malignant gliomas. Proteomics Clin Appl. 2009;3:83–94.

    Article  PubMed  CAS  Google Scholar 

  2. Dominguez DC, Lopes R, Torres ML. Proteomics: clinical applications. Clin Lab Sci. 2007;20:245–8.

    PubMed  Google Scholar 

  3. Chakravarti A, Delaney MA, Noll E, Black PM, Loeffler JS, Muzikansky A, et al. Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin Cancer Res. 2001;7:2387–95.

    PubMed  CAS  Google Scholar 

  4. Mischak H, Apweiler R, Banks RE, Conaway M, Coon J, Dominiczak A, et al. Clinical proteomics: a need to define the field and to begin to set adequate standards. Proteomics Clin Appl. 2007;1:148–56.

    Article  PubMed  CAS  Google Scholar 

  5. Petrak J, Ivanek R, Toman O, Cmejla R, Cmejlova J, Vyoral D, et al. Déjà vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics. 2008;8:1744–9.

    Article  PubMed  CAS  Google Scholar 

  6. Deighton RF, Short DM, McGregor RJ, Gow AJ, Whittle IR, McCulloch J. The utility of functional interaction and cluster analysis in CNS proteomics. J Neurosci Methods. 2009;180:321–9.

    Article  PubMed  CAS  Google Scholar 

  7. Whittle IR, Short DM, Deighton RF, Kerr LE, Smith C, McCulloch J. Proteomic analysis of glioma. Br J Neurosurg. 2007;21:576–82.

    Article  PubMed  CAS  Google Scholar 

  8. Chumbalkar VC, Sawaya R, Bogler O. Proteomics: the new frontier also for brain tumor research. Curr Probl Cancer. 2008;32:143–54.

    Article  PubMed  Google Scholar 

  9. Niclou SP, Fack F, Rajcevic U. Glioma proteomics: status and perspectives. J Proteomics. 2010;73:1823–38.

    Article  PubMed  CAS  Google Scholar 

  10. Deighton RF, McGregor R, Kemp J, McCulloch J, Whittle IR. Glioma pathophysiology: insights emerging from proteomics. Brain Path. 2010;20:691–703.

    Article  CAS  Google Scholar 

  11. Kalinina J, Peng J, Ritchie JC, Van Meir EG. Proteomics of gliomas: initial biomarker discovery and evolution of technology. Neuro Oncol. 2011;13:926–42.

    Article  PubMed  CAS  Google Scholar 

  12. Deighton RF, Kerr LE, Short DM, Allerhand M, Whittle IR, McCulloch J. Network generation enhances interpretation of proteomic data from induced apoptosis. Proteomics. 2010;10:1307–15.

    Article  PubMed  CAS  Google Scholar 

  13. Herrmann A, Ooi J, Launay S, Searcy JL, Deighton RF, McCulloch J, et al. Proteomic data in meningiomas: post-proteomic analysis can reveal novel pathophysiological pathways. J Neurooncol. 2011;104:401–10.

    Article  PubMed  CAS  Google Scholar 

  14. Grzendowski M, Wolter M, Riemenschneider MJ, Knobbe CB, Schlegel U, Meyer HE, et al. Differential proteome analysis of human gliomas stratified for loss of heterozygosity on chromosomal arms 1p and 19q. Neuro Oncol. 2010;12:243–56.

    Article  PubMed  CAS  Google Scholar 

  15. Anagnostopoulos AK, Dimas KS, Papathanassiou C, Braoudaki M, Anastasia E, Vougas K, et al. Proteomics studies of childhood pilocytic astrocytoma. J Proteome Res. 2011;10:2555–65.

    Article  PubMed  CAS  Google Scholar 

  16. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  17. Hanash SM, Bobek MP, Rickman DS, Williams T, Rouillard JM, Kuick R, et al. Integrating cancer genomics and proteomics in the post-genome era. Proteomics. 2002;2:69–75.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang R, Tremblay TL, McDermid A, Thibault P, Stanimirovic D. Identification of differentially expressed proteins in human glioblastoma cell lines and tumors. Glia. 2003;42:194–208.

    Article  PubMed  Google Scholar 

  19. Hiratsuka M, Inoue T, Toda T, Kimura N, Shirayoshi Y, Kamitani H, et al. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun. 2003;309:558–66.

    Article  PubMed  CAS  Google Scholar 

  20. Iwadate Y, Sakaida T, Hiwasa T, Nagai Y, Ishikura H, Takiguchi M, et al. Molecular classification and survival prediction in human gliomas based on proteome analysis. Cancer Res. 2004;64:2496–501.

    Article  PubMed  CAS  Google Scholar 

  21. Odreman F, Vindigni M, Gonzales ML, Niccolini B, Candiano G, Zanotti B, et al. Proteomic studies on low- and high-grade human brain astrocytomas. J Proteome Res. 2005;4:698–708.

    Article  PubMed  CAS  Google Scholar 

  22. Schwartz SA, Weil RJ, Johnson MD, Toms SA, Capriolo RM. Protein profiling in brain tumors using mass spectrometry: feasibility of a new technique for the analysis of protein expression. Clin Cancer Res. 2004;10:981–7.

    Article  PubMed  CAS  Google Scholar 

  23. Schwartz SA, Weil RJ, Thompson RC, Shyr Y, Moore JH, Toms SA, et al. Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-­assisted laser desorption ionization mass spectrometry. Cancer Res. 2005;65:7674–81.

    PubMed  CAS  Google Scholar 

  24. Fiore G, Di Cristo C, Monti G, Amoresano A, Columbano L, Pucci P, et al. Tubulin nitration in human gliomas. Neurosci Lett. 2006;394:57–62.

    Article  PubMed  CAS  Google Scholar 

  25. Jiang R, Mircean C, Shmulevich I, Cogdell D, Jia Y, Tabus I, et al. Pathway alterations during glioma progression revealed by reverse phase protein lysate arrays. Proteomics. 2006;6:2964–71.

    Article  PubMed  CAS  Google Scholar 

  26. Li J, Zhuang Z, Okamoto H, Vortmeyer AO, Park DM, Furuta M, et al. Proteomic profiling distinguishes astrocytomas and identifies differential tumor markers. Neurology. 2006;66:733–6.

    Article  PubMed  CAS  Google Scholar 

  27. Khalil AA. Biomarker discovery: a proteomic approach for brain cancer profiling. Cancer Sci. 2007;98:201–13.

    Article  PubMed  CAS  Google Scholar 

  28. Okamoto H, Li J, Glasker S, Vortmeyer AO, Jaffe H, Robison RA, et al. Proteomic comparison of oligodendrogliomas with and without 1pLOH. Cancer Biol Ther. 2007;6:391–6.

    PubMed  CAS  Google Scholar 

  29. Park CK, Kim JH, Moon MJ, Jung JH, Lim SY, Park SH, et al. Investigation of molecular factors associated with malignant transformation of oligodendroglioma by proteomic study of a single case of rapid tumor progression. J Cancer Res Clin Oncol. 2008;134:255–62.

    Article  PubMed  CAS  Google Scholar 

  30. Park CK, Jung JH, Park SH, Jung HW, Cho BK. Multifarious proteomic signatures and regional heterogeneity in glioblastomas. J Neurooncol. 2009;94:31–9.

    Article  PubMed  Google Scholar 

  31. Grzendowski M, Riemenschneider MJ, Hawranke E, Stefanski A, Meyer HE, Reifenberger G, et al. Simultaneous extraction of nucleic acids and proteins from tissue specimens by ultracentrifugation: a protocol using the high-salt protein fraction for quantitative proteome analysis. Proteomics. 2009;9:4985–90.

    Article  PubMed  CAS  Google Scholar 

  32. Gimenez M, Souza VC, Izumi C, Barbieri MR, Chammas R, Oba-Shinjo SM, et al. Proteomic analysis of low- to high-grade astrocytomas reveals an alteration of the expression level of raf kinase inhibitor protein and nucleophosmin. Proteomics. 2010;10:2812–21.

    Article  PubMed  CAS  Google Scholar 

  33. Xiong GZ, Xiao HS, Lu JX, Zhang DS, Bi CL, Peng L, et al. Differential protein expression in low-grade astrocytomas and peritumoral human brain tissues. Neural Regen Res. 2010;5:1915–20.

    CAS  Google Scholar 

  34. Rostomily RC, Born DE, Beyer RP, Jin J, Alvord Jr EC, Mikheev AM, et al. Quantitative proteomic analysis of oligodendrogliomas with and without 1p/19q deletion. J Proteome Res. 2010;9:2610–8.

    Article  PubMed  CAS  Google Scholar 

  35. Zhuang Z, Qi M, Li J, Okamoto H, Xu DS, Iyer RR, et al. Proteomic identification of glutamine synthase as a differential marker for oligodendrogliomas and astrocytomas. J Neurosurg. 2011;115:789–95.

    Article  PubMed  CAS  Google Scholar 

  36. Thirant C, Varlet P, Lipecka J, Le Gall M, Broussard C, Chafey P, et al. Proteomic analysis of oligodendrogliomas expressing a mutant isocitrate dehydrogenase-1. Proteomics. 2011;11:4139–54.

    Article  PubMed  CAS  Google Scholar 

  37. Bourne TD, Schiff D. Update on molecular findings, management and outcome in low-grade gliomas. Nat Rev Neurol. 2010;6:695–701.

    Article  PubMed  Google Scholar 

  38. Chumbalkar VC, Subhashini C, Dhople VM, Sundaram CS, Jagannadham MV, Kumar KN, et al. Differential protein expression in human gliomas and molecular insights. Proteomics. 2005;5:1167–77.

    Article  PubMed  CAS  Google Scholar 

  39. Fontaine D, Vandenbos F, Lebrun C, Paquis V, Frenay M. Diagnostic and prognostic values of 1p and 19q deletions in adult gliomas: critical review of the literature and implications in daily clinical practice. Rev Neurol (Paris). 2008;164:595–604.

    Article  CAS  Google Scholar 

  40. Kim YH, Nobusawa S, Mittelbronn M, Paulus W, Brokinkel B, Keyvani K, et al. Molecular classification of low-grade diffuse gliomas. Am J Pathol. 2010;177:2708–14.

    Article  PubMed  Google Scholar 

  41. Smith JS, Perry A, Borell TJ, Lee HK, O’Fallon J, Hosek SM, et al. Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol. 2000;18:636–45.

    PubMed  CAS  Google Scholar 

  42. Hartmann C, Hentschel B, Tatagiba M, Schramm J, Schnell O, Seigel C, et al. Molecular markers in low-grade gliomas: predictive or prognostic? Clin Cancer Res. 2011;17:4588–99.

    Article  PubMed  CAS  Google Scholar 

  43. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.

    Article  PubMed  CAS  Google Scholar 

  44. Yan H, Parsons DW, Jin G, McLendon R, Rasheed A, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.

    Article  PubMed  CAS  Google Scholar 

  45. Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, et al. J Clin Oncol. 2009;27:4150–4.

    Article  PubMed  CAS  Google Scholar 

  46. Ichimura K, Pearson DM, Kocialkowski S, Backlund LM, Chan R, Jones DT, et al. IDH1 mutations are present in the majority of adult gliomas but rare in gliioblastoma. Neuro Oncol. 2009;11:341–7.

    Article  PubMed  CAS  Google Scholar 

  47. Capper D, Reuss D, Schittenhelm J, Hartmann C, Bremer J, Sahm F, et al. Mutation-specific IDH1 ­antibody differentiates oligodendrogliomas and oligoastrocytomas from other brain tumors with oligodendroglioma-like morphology. Acta Neuropathol. 2010;121:241–52.

    Article  PubMed  Google Scholar 

  48. Van Den Bent MJ, Dubbink HJ, Marie Y, Brandes AA, Taphoorn MJ, Wesseling P, et al. IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin Cancer Res. 2010;16:1597–604.

    Article  PubMed  Google Scholar 

  49. Houillier C, Wang X, Kaloshi G, Mokhtari K, Guillevin R, Laffaire J, et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology. 2011;75:1560–6.

    Article  Google Scholar 

  50. Bello L, Fava E, Carrabba G, Papagno C, Gaini SM. Present day’s standards in microsurgery of low-grade gliomas. Adv Tech Stand Neurosurg. 2010;35:113–57.

    Article  PubMed  CAS  Google Scholar 

  51. Lote K, Egeland T, Hager B, Stenwig B, Skullerud K, Berg-Johnsen J, et al. Survival, prognostic factors, and therapeutic efficacy in low-grade glioma: a retrospective study in 379 patients. J Clin Oncol. 1997;15:3129–40.

    PubMed  CAS  Google Scholar 

  52. Stieber VW. Low-grade gliomas. Curr Treat Options Oncol. 2001;2:495–506.

    Article  PubMed  CAS  Google Scholar 

  53. Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64:479–89.

    PubMed  CAS  Google Scholar 

  54. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, et al. Genetic pathways to glioblastoma: a population based study. Cancer Res. 2004;64:6892–9.

    Article  PubMed  CAS  Google Scholar 

  55. Sanai N, Chang S, Berger MS. Low-grade gliomas in adults. J Neurosurg. 2011;115:948–65.

    Article  PubMed  Google Scholar 

  56. Rutka JT, Murakami M, Dirks PB, Hubbard SL, Becker LE, Fukuyama K, et al. Role of glial filaments in cells and tumors of glial origin: a review. J Neurosurg. 1997;87:420–30.

    Article  PubMed  CAS  Google Scholar 

  57. Chin D, Boyle GM, Williams RM, Ferguson K, Pandeya N, Campbell CM, et al. Alpha B-crystallin, a new independent marker for poor prognosis in head and neck cancer. Laryngoscope. 2005;115:1239–42.

    Article  PubMed  CAS  Google Scholar 

  58. Holcakova J, Hernychova L, Bouchal P, Brozkova K, Zaloudik J, Valik D, et al. Identification of alpha B-crystallin, a biomarker of renal cell carcinoma by SELDI-TOF MS. Int J Biol Markers. 2008;23:48–53.

    PubMed  CAS  Google Scholar 

  59. Ou K, Yu K, Kesuma D, Hooi M, Huang N, Chen W, et al. Novel breast cancer biomarkers identified by integrative proteomic and gene expression mapping. J Proteome Res. 2008;7:1518–28.

    Article  PubMed  CAS  Google Scholar 

  60. Parcellier A, Schmitt E, Brunet M, Hammann A, Solary E, Garrido C. Small heat shock proteins HSP27 and alphaB-crystallin: cytoprotective and oncogenic functions. Antioxid Redox Signal. 2005;7:404–13.

    Article  PubMed  CAS  Google Scholar 

  61. Asamoto M, Cohen SM. Prohibitin gene is overexpressed but not mutated in rat bladder carcinomas and cell lines. Cancer Lett. 1994;83:201–7.

    Article  PubMed  CAS  Google Scholar 

  62. Frazoni A, Dima M, D’Agnostino M, Puppin C, Fabbro D, Loreto CD, et al. Prohibitin is overexpressed in papillary thyroid carcinomas bearing the BRAF (V600E) mutation. Thyroid. 2009;19:247–55.

    Article  Google Scholar 

  63. Ummanni R, Junker H, Zimmermann U, Venz S, Teller S, Giebel J, et al. Prohibitin identified by proteomic analysis of prostate biopsies distinguishes hyperplasia and cancer. Cancer Lett. 2008;266:171–85.

    Article  PubMed  CAS  Google Scholar 

  64. Rajalingham K, Rudel T. Ras-Raf signalling needs prohibitin. Cell Cycle. 2005;4:1503–5.

    Article  Google Scholar 

  65. Rajalingham K, Wunder C, Brinkmann V, Churin Y, Hekman M, Sievers C, et al. Prohibitin is requires for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat Cell Biol. 2005;7:837–43.

    Article  Google Scholar 

  66. Li HZ, Gao Y, Zhao XL, Liu YX, Sun BC, Yang J, et al. Effects of raf kinase inhibitor protein expression on metastasis and progression of human breast cancer. Mol Cancer Res. 2009;7:832–40.

    Article  PubMed  CAS  Google Scholar 

  67. Kim HS, Kim GY, Lim SJ, Kim YW. Raf-1 kinase inhibitory protein expression in thyroid carcinomas. Endocr Pathol. 2010;21:253–7.

    Article  PubMed  CAS  Google Scholar 

  68. Al-Mulla F, Bitar MS, Feng J, Park S, Yeung KC. A new model for raf kinase inhibitory protein induced chemotherapeutic resistance. PLoS One. 2012;7:e29532.

    Article  PubMed  CAS  Google Scholar 

  69. McKenzie AJ, Campbell SL, Howe AK. Protein kinase A activity and anchoring are required for ovarian cancer cell migration and invasion. PLoS One. 2011;6:e26552.

    Article  PubMed  CAS  Google Scholar 

  70. Riveros S, Cardenas J, Bornens M, Rios RM. Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J. 2009;28:1016–28.

    Article  Google Scholar 

  71. Wang X, Ren JH, Lin F, Wei JX, Long M, Yan L, et al. Stathmin is involved in arsenic trioxide-induced apoptosis in human cervical cancer cell lines via PI3K linked signal pathway. Cancer Biol Ther. 2010;10:632–43.

    Article  PubMed  CAS  Google Scholar 

  72. Zhang X, Cao H, Gao D. The expression Stathmin gene in laryngeal squamous cell carcinoma. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2009;23:872–3. 877.

    PubMed  Google Scholar 

  73. Service RF. Proteomics ponders prime time. Science. 2008;321:1758–61.

    Article  PubMed  CAS  Google Scholar 

  74. Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, Kinzler KW, et al. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci. 2011;108:3270–5.

    Article  PubMed  CAS  Google Scholar 

  75. Bonetta L. Protein-protein interactions: Interactome under construction. Nature. 2010;468:851–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Whittle MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Gerth, A.M.J., Deighton, R.F., McCulloch, J., Whittle, I.R. (2013). Proteomic Studies in Low-Grade Gliomas: What Have They Informed About Pathophysiology?. In: Duffau, H. (eds) Diffuse Low-Grade Gliomas in Adults. Springer, London. https://doi.org/10.1007/978-1-4471-2213-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2213-5_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2212-8

  • Online ISBN: 978-1-4471-2213-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics