Skip to main content

Micro-Tactile Sensors for In Vivo Measurements of Elasticity

  • Chapter
  • First Online:
Book cover Advanced Mechatronics and MEMS Devices

Part of the book series: Microsystems ((MICT,volume 23))

  • 2877 Accesses

Abstract

In this chapter, a sensing approach for the measurement of both contact force and elasticity is introduced and discussed. By using the developed method, the elasticity of various objects (e.g., tissue) can be measured by simply touching the targeted object with the sensor. Each developed sensor consists of a pair of contact elements that have different values of stiffness. During contact, the relative deformation of the two sensing components can be used to calculate the Young’s modulus of elasticity. Several prototypes of tactile sensors have been fabricated through various MEMS processes. One of the prototypes developed through a polymer MEMS process has a favorable flexible structure, which enables the sensor to be integrated on end-effectors for robotic or biomedical applications. Finally, the tactile sensor has been attached on a touch probe and tested in a handheld mode. An estimation algorithm for this handheld device, which employs a recursive least squares method with adaptive forgetting factors, has also been developed. Experimental results show that this sensor can differentiate between a variety of rubber specimens and has the potential to provide reliable in vivo measurement of tissue elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tegin J, Wikander J (2005) Tactile sensing in intelligent robotic manipulation—a review. Ind Robot 32:64–70

    Article  Google Scholar 

  2. Aoyagi R, Yoshida T (2004) Frequency equations of an ultrasonic vibrator for the elastic sensor using a contact impedance method. Jpn J Appl Phys 43:3204–3209

    Article  Google Scholar 

  3. Bab A et al (2008) Design and simulation of a tactile sensor for soft-tissue compliance detection. IEEJ Trans Sensor Micromachine 128:186–192

    Article  Google Scholar 

  4. Murayama Y et al (2008) Development of a new instrument for examination of stiffness in the breast using haptic sensor technology. Sensor Actuator Phys 143:430–438

    Article  Google Scholar 

  5. Eltaib MEH, Hewit JR (2003) Tactile sensing technology for minimal access surgery—a review. Mechatronics 13:1163–1177

    Article  Google Scholar 

  6. Tholey G et al (2005) Force feedback plays a significant role in minimally invasive surgery: results and analysis. Ann Surg 241:102

    Google Scholar 

  7. Lyyra T et al (1999) In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J Biomed Mater Res B Appl Biomater 48:482–487

    Article  Google Scholar 

  8. Ottensmeyer M, Salisbury J (2001) In vivo data acquisition instrument for solid organ mechanical property measurement. In: Medical image computing and computer-assisted intervention, Springer, Heidelberg, pp 975–982

    Google Scholar 

  9. Szewczyk S et al (2006) Palpationlike soft-material elastic modulus measurement using piezoelectric cantilevers. Rev Sci Instrum 77:044302

    Article  Google Scholar 

  10. Wellman P et al (1999) Breast tissue stiffness in compression is correlated to histological diagnosis. Harvard BioRobotics Laboratory Technical Report

    Google Scholar 

  11. Vannah W et al (1999) A method of residual limb stiffness distribution measurement. J Rehabil Res Dev 36:1–7

    Google Scholar 

  12. Muthupillai R et al (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269:1854

    Article  Google Scholar 

  13. Sarvazyan A et al (1998) Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 24:1419–1435

    Article  Google Scholar 

  14. Chen S et al (2009) Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity. IEEE Trans Ultrason Ferroelectrics Freq Contr 56:55–62

    Article  Google Scholar 

  15. Bercoff J et al (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectrics Freq Contr 51:396–409

    Article  Google Scholar 

  16. Kleesattel C, Gladwell G (1968) The contact-impedance meter-1. Ultrasonics 6:175–180

    Article  Google Scholar 

  17. Omata S, Terunuma Y (1992) New tactile sensor like the human hand and its applications. Sensor Actuator Phys 35:9–15

    Article  Google Scholar 

  18. Jalkanen V (2010) Hand-held resonance sensor for tissue stiffness measurements—a theoretical and experimental analysis. Meas Sci Tech 21:055801

    Article  Google Scholar 

  19. Murayama Y, Omata S (2004) Fabrication of micro tactile sensor for the measurement of micro-scale local elasticity. Sensor Actuator Phys 109:202–207

    Article  Google Scholar 

  20. Murayama Y et al (2005) Development of tactile mapping system for the stiffness characterization of tissue slice using novel tactile sensing technology. Sensor Actuator Phys 120:543–549

    Article  Google Scholar 

  21. Murayama Y et al (2007) High resolution regional elasticity mapping of the human prostate. Conf Proc IEEE Eng Med Biol Soc 2007:5803–5806

    Google Scholar 

  22. Oie T et al (2009) Local elasticity imaging of vascular tissues using a tactile mapping system. J Artif Organs 12:40–46

    Article  Google Scholar 

  23. Dargahi J et al (2007) Modelling and testing of a sensor capable of determining the stiffness of biological tissues. Can J Electr Comput Eng 32:45–51

    Article  Google Scholar 

  24. Beebe D et al (1995) A silicon force sensor for robotics and medicine. Sensor Actuator Phys 50:55–65

    Article  Google Scholar 

  25. Kim K, Lee K, Kim Y, Lee D, Cho N, Kim W, Park K, Park H, Park Y, Kim J (2006) In: 19th IEEE International Conference on Micro Electro Mechanical Systems, IEEE, Istanbul, pp. 678–681.

    Google Scholar 

  26. Gray BL, Fearing RS (1996) In: IEEE International Conference on Robotics and Automation, IEEE, Minneapolis, MN, USA pp. 1–6.

    Google Scholar 

  27. Leineweber M et al (2000) New tactile sensor chip with silicone rubber cover. Sensor Actuator Phys 84:236–245

    Article  Google Scholar 

  28. Sergio M, Manaresi N, Tartagni M, Guerrieri R, Canegallo R (2002) In: IEEE Sensors, IEEE, Kissimmee, Florida, USA pp. 1625–1630.

    Google Scholar 

  29. Engel J et al (2003) Development of polyimide flexible tactile sensor skin. J Micromech Microeng 13:359

    Article  Google Scholar 

  30. Engel J et al (2005) Polymer micromachined multimodal tactile sensors. Sensor Actuator Phys 117:50–61

    Article  Google Scholar 

  31. Lee H et al (2006) A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment. J Microelectromech Syst 15:1681–1686

    Article  Google Scholar 

  32. Johnson K (1987) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  33. Peng P et al (2009) Novel MEMS stiffness sensor for in-vivo tissue characterization measurement. Conf Proc IEEE Eng Med Biol Soc 1:6640–6643

    Google Scholar 

  34. Peng P et al (2010) Novel MEMS stiffness sensor for force and elasticity measurements. Sensor Actuator Phys 158:10–17

    Article  Google Scholar 

  35. Sezen A et al (2005) Passive wireless MEMS microphones for biomedical applications. J Biomech Eng 127:1030

    Article  Google Scholar 

  36. Peng P et al (2009) Flexible tactile sensor for tissue elasticity measurements. J Microelectromech Syst 18:1226–1233

    Article  Google Scholar 

  37. Jo B et al (2002) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromech Syst 9:76–81

    Article  Google Scholar 

  38. Peng P, Rajamani R (2011) Handheld micro tactile sensor for elasticity measurement. IEEE Sensor, Vol. 11, no. 9, pp 1935–1942, Sept 2011

    Google Scholar 

  39. Wang J et al (2004) Friction estimation on highway vehicles using longitudinal measurements. J Dyn Syst Meas Contr 126:265

    Article  Google Scholar 

  40. Sastry S, Bodson M (1989) Adaptive control: stability, convergence, and robustness. Prentice-Hall, NJ

    MATH  Google Scholar 

  41. Gustafsson F (2001) Adaptive filtering and change detection. Wiley, Chichester

    Book  Google Scholar 

  42. Page E (1954) Continuous inspection schemes. Biometrika 41:100

    MathSciNet  MATH  Google Scholar 

  43. Rajamani R (2002) Radar health monitoring for highway vehicle applications. Veh Syst Dyn 38:23–54

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Rajamani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peng, P., Rajamani, R. (2013). Micro-Tactile Sensors for In Vivo Measurements of Elasticity. In: Zhang, D. (eds) Advanced Mechatronics and MEMS Devices. Microsystems, vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9985-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9985-6_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9984-9

  • Online ISBN: 978-1-4419-9985-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics