Skip to main content

Myeloid-Derived Suppressor Cells in Cancer: Mechanisms and Therapeutic Perspectives

  • Chapter
  • First Online:
  • 1781 Accesses

Abstract

Patients with cancer have an impaired T cell response that can decrease the potential therapeutic benefit of cancer vaccines and other forms of immunotherapy. l-Arginine (l-Arg) is a nonessential amino acid that is fundamental for the function of T lymphocytes. Recent findings in tumor-bearing mice and cancer patients indicate that the increased metabolism of l-Arg by myeloid-derived suppressor cells (MDSC) producing Arginase I inhibits T lymphocyte responses. Here, we discuss some of the most recent concepts of how MDSC expressing Arginase I may regulate T cell function in cancer and other chronic inflammatory diseases, and suggest possible therapeutic interventions to overcome this inhibitory effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albina JE, Caldwell MD, Henry WL Jr, Mills CD (1989) Regulation of macrophage functions by L-arginine. J Exp Med 169:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Almand B, Resser JR, Lindman B et al (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–1766

    PubMed  CAS  Google Scholar 

  • Almand B, Clark JI, Nikitina E et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689

    PubMed  CAS  Google Scholar 

  • Amber IJ, Hibbs JB Jr, Parker CJ, Johnson BB, Taintor RR, Vavrin Z (1991) Activated macrophage conditioned medium: identification of the soluble factors inducing cytotoxicity and the L-arginine dependent effector mechanism. J Leukoc Biol 49:610–620

    PubMed  CAS  Google Scholar 

  • Barbul A, Rettura G, Levenson SM, Seifter E (1977) Arginine: a thymotropic and wound-healing promoting agent. Surg Forum 28:101–103

    PubMed  CAS  Google Scholar 

  • Bronstein-Sitton N, Cohen-Daniel L, Vaknin I et al (2003) Sustained exposure to bacterial antigen induces interferon-gamma-dependent T cell receptor zeta down-regulation and impaired T cell function. Nat Immunol 4:957–964

    Article  PubMed  CAS  Google Scholar 

  • Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654

    Article  PubMed  CAS  Google Scholar 

  • Bronte V, Apolloni E, Cabrelle A et al (2000) Identification of a CD11b (+)/Gr-1 (+)/CD31 (+) myeloid progenitor capable of activating or suppressing CD8 (+) T cells. Blood 96:3838–3846

    PubMed  CAS  Google Scholar 

  • Bronte V, Serafini P, De Santo C et al (2003) IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170:270–278

    PubMed  CAS  Google Scholar 

  • Brosnan ME, Brosnan JT (2004) Renal arginine metabolism. J Nutr 134:2791S–2795S

    PubMed  CAS  Google Scholar 

  • Chang CI, Liao JC, Kuo L (2001) Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res 61:1100–1106

    PubMed  CAS  Google Scholar 

  • Cheng P, Corzo CA, Luetteke N et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235–2249

    Article  PubMed  CAS  Google Scholar 

  • Chicoine LG, Paffett ML, Young TL, Nelin LD (2004) Arginase inhibition increases nitric oxide production in bovine pulmonary arterial endothelial cells. Am J Physiol Lung Cell Mol Physiol 287:L60–L68

    Article  PubMed  CAS  Google Scholar 

  • Closs EI, Simon A, Vekony N, Rotmann A (2004) Plasma membrane transporters for arginine. J Nutr 134:2752S–2759S

    PubMed  CAS  Google Scholar 

  • Corsi MM, Maes HH, Wasserman K, Fulgenzi A, Gaja G, Ferrero ME (1998) Protection by L-2-oxothiazolidine-4-carboxylic acid of hydrogen peroxide-induced CD3zeta and CD16zeta chain down-regulation in human peripheral blood lymphocytes and lymphokine-activated killer cells. Biochem Pharmacol 56:657–662

    Article  PubMed  CAS  Google Scholar 

  • Cullen ME, Yuen AH, Felkin LE et al (2006) Myocardial expression of the arginine:glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation 114:I16–I20

    Article  PubMed  CAS  Google Scholar 

  • De SC, Serafini P, Marigo I et al (2005) Nitroaspirin corrects immune dysfunction in tumor-­bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A 102:4185–4190

    Article  CAS  Google Scholar 

  • Deignan JL, Livesay JC, Yoo PK et al (2006) Ornithine deficiency in the arginase double knockout mouse. Mol Genet Metab 89:87–96

    Article  PubMed  CAS  Google Scholar 

  • Dolcetti L, Peranzoni E, Ugel S et al (2010) Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40:22–35

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Zhu G, Tamada K, Chen L (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369

    Article  PubMed  CAS  Google Scholar 

  • Finke JH, Zea AH, Stanley J et al (1993) Loss of T-cell receptor zeta chain and p56 lck in T-cells infiltrating human renal cell carcinoma. Cancer Res 53:5613–5616

    PubMed  CAS  Google Scholar 

  • Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich D, Ishida T, Oyama T et al (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150–4166

    PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166:5398–5406

    PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Bronte V, Chen SH et al (2007) The terminology issue for myeloid-derived ­suppressor cells. Cancer Res 67:425

    Article  PubMed  CAS  Google Scholar 

  • Gallina G, Dolcetti L, Serafini P et al (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116:2777–2790

    Article  PubMed  CAS  Google Scholar 

  • Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6:383–393

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Sica A, Young HA et al (1994) Alterations in NF kappa B/Rel family proteins in splenic T-cells from tumor-bearing mice and reversal following therapy. Cancer Res 54:2969–2972

    PubMed  CAS  Google Scholar 

  • Hellstrom I, Sjogren HO, Warner G, Hellstrom KE (1971) Blocking of cell-mediated tumor immunity by sera from patients with growing neoplasms. Int J Cancer 7:226–237

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom KE, Hellstrom I, Nelson K (1983) Antigen-specific suppressor (“blocking”) factors in tumor immunity. Biomembranes 11:365–388

    PubMed  CAS  Google Scholar 

  • Hesse M, Modolell M, La Flamme AC et al (2001) Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol 167:6533–6544

    PubMed  CAS  Google Scholar 

  • Hibbs JB Jr, Taintor RR, Vavrin Z (1987) Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235:473–476

    Article  PubMed  CAS  Google Scholar 

  • Holda JH, Maier T, Claman HN (1985) Murine graft-versus-host disease across minor barriers: immunosuppressive aspects of natural suppressor cells. Immunol Rev 88:87–105

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Pan PY, Li Q et al (2006) Gr-1  +  CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131

    Article  PubMed  CAS  Google Scholar 

  • Item CB, Stockler-Ipsiroglu S, Stromberger C et al (2001) Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet 69:1127–1133

    Article  PubMed  CAS  Google Scholar 

  • Iyer RK, Yoo PK, Kern RM et al (2002) Mouse model for human arginase deficiency. Mol Cell Biol 22:4491–4498

    Article  PubMed  CAS  Google Scholar 

  • Iyo AH, Zhu MY, Ordway GA, Regunathan S (2006) Expression of arginine decarboxylase in brain regions and neuronal cells. J Neurochem 96:1042–1050

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen LC, Theilgaard-Monch K, Christensen EI, Borregaard N (2007) Arginase 1 is expressed in myelocytes/metamyelocytes and localized in gelatinase granules of human neutrophils. Blood 109:3084–3087

    PubMed  CAS  Google Scholar 

  • Kato JY (1997) Control of G1 progression by D-type cyclins: key event for cell proliferation. Leukemia 11(Suppl 3):347–351

    PubMed  Google Scholar 

  • Kirk SJ, Regan MC, Wasserkrug HL, Sodeyama M, Barbul A (1992) Arginine enhances T-cell responses in athymic nude mice. JPEN J Parenter Enteral Nutr 16:429–432

    Article  PubMed  CAS  Google Scholar 

  • Klausner RD, Lippincott-Schwartz J, Bonifacino JS (1990) The T cell antigen receptor: insights into organelle biology. Annu Rev Cell Biol 6:403–431

    Article  PubMed  CAS  Google Scholar 

  • Kono K, Ressing ME, Brandt RM et al (1996a) Decreased expression of signal-transducing zeta chain in peripheral T cells and natural killer cells in patients with cervical cancer. Clin Cancer Res 2:1825–1828

    PubMed  CAS  Google Scholar 

  • Kono K, Salazar-Onfray F, Petersson M et al (1996b) Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur J Immunol 26:1308–1313

    Article  PubMed  CAS  Google Scholar 

  • Kropf P, Baud D, Marshall SE et al (2007) Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol 37:935–945

    Article  PubMed  CAS  Google Scholar 

  • Kryczek I, Wei S, Zou L et al (2006a) Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J Immunol 177:40–44

    PubMed  CAS  Google Scholar 

  • Kryczek I, Zou L, Rodriguez P et al (2006b) B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203:871–881

    Article  PubMed  CAS  Google Scholar 

  • Kusmartsev S, Gabrilovich DI (2005) STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174:4880–4891

    PubMed  CAS  Google Scholar 

  • Kusmartsev S, Cheng F, Yu B et al (2003) All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 63:4441–4449

    PubMed  CAS  Google Scholar 

  • Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172:989–999

    PubMed  CAS  Google Scholar 

  • Kuss I, Saito T, Johnson JT, Whiteside TL (1999) Clinical significance of decreased zeta chain expression in peripheral blood lymphocytes of patients with head and neck cancer. Clin Cancer Res 5:329–334

    PubMed  CAS  Google Scholar 

  • Lee J, Ryu H, Ferrante RJ, Morris SM Jr, Ratan RR (2003) Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci U S A 100:4843–4848

    Article  PubMed  CAS  Google Scholar 

  • Li X, Liu J, Park JK et al (1994) T cells from renal cell carcinoma patients exhibit an abnormal pattern of kappa B-specific DNA-binding activity: a preliminary report. Cancer Res 54:5424–5429

    PubMed  CAS  Google Scholar 

  • Makarenkova VP, Bansal V, Matta BM, Perez LA, Ochoa JB (2006) CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol 176:2085–2094

    PubMed  CAS  Google Scholar 

  • McHugh RS, Shevach EM (2002) Cutting edge: depletion of CD4  +  CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J Immunol 168:5979–5983

    PubMed  CAS  Google Scholar 

  • McHugh RS, Shevach EM, Margulies DH, Natarajan K (2001) A T cell receptor transgenic model of severe, spontaneous organ-specific autoimmunity. Eur J Immunol 31:2094–2103

    Article  PubMed  CAS  Google Scholar 

  • Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774

    Article  PubMed  CAS  Google Scholar 

  • Miescher S, Whiteside TL, Carrel S, von FV (1986) Functional properties of tumor-infiltrating and blood lymphocytes in patients with solid tumors: effects of tumor cells and their supernatants on proliferative responses of lymphocytes. J Immunol 136:1899–1907

    PubMed  CAS  Google Scholar 

  • Miescher S, Stoeck M, Qiao L, Barras C, Barrelet L, von FV (1988) Preferential clonogenic deficit of CD8-positive T-lymphocytes infiltrating human solid tumors. Cancer Res 48:6992–6998

    PubMed  CAS  Google Scholar 

  • Mizoguchi H, O’Shea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa AC (1992) Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 258:1795–1798

    Article  PubMed  CAS  Google Scholar 

  • Morris SM Jr (2002) Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr 22:87–105

    Article  PubMed  CAS  Google Scholar 

  • Munder M, Eichmann K, Modolell M (1998) Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 160:5347–5354

    PubMed  CAS  Google Scholar 

  • Munder M, Eichmann K, Moran JM, Centeno F, Soler G, Modolell M (1999) Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol 163:3771–3777

    PubMed  CAS  Google Scholar 

  • Munder M, Mollinedo F, Calafat J et al (2005) Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 105:2549–2556

    Article  PubMed  CAS  Google Scholar 

  • Munder M, Schneider H, Luckner C et al (2006) Suppression of T-cell functions by human granulocyte arginase. Blood 108:1627–1634

    Article  PubMed  CAS  Google Scholar 

  • Munn DH, Sharma MD, Baban B et al (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj S, Gupta K, Pisarev V et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    Article  PubMed  CAS  Google Scholar 

  • Nieves C Jr, Langkamp-Henken B (2002) Arginine and immunity: a unique perspective. Biomed Pharmacother 56:471–482

    Article  PubMed  CAS  Google Scholar 

  • Ochoa JB, Bernard AC, Mistry SK et al (2000) Trauma increases extrahepatic arginase activity. Surgery 127:419–426

    Article  PubMed  CAS  Google Scholar 

  • Ochoa JB, Strange J, Kearney P, Gellin G, Endean E, Fitzpatrick E (2001) Effects of L-arginine on the proliferation of T lymphocyte subpopulations. JPEN J Parenter Enteral Nutr 25:23–29

    Article  PubMed  CAS  Google Scholar 

  • Ohm JE, Carbone DP (2001) VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res 23:263–272

    Article  PubMed  CAS  Google Scholar 

  • Otsuji M, Kimura Y, Aoe T, Okamoto Y, Saito T (1996) Oxidative stress by tumor-derived ­macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses. Proc Natl Acad Sci U S A 93:13119–13124

    Article  PubMed  CAS  Google Scholar 

  • Oyama T, Ran S, Ishida T et al (1998) Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 160:1224–1232

    PubMed  CAS  Google Scholar 

  • Pan PY, Wang GX, Yin B et al (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid derived suppressor cell development by blockade of SCF function. Blood 111:219–228

    Article  PubMed  CAS  Google Scholar 

  • Pekarek LA, Starr BA, Toledano AY, Schreiber H (1995) Inhibition of tumor growth by elimination of granulocytes. J Exp Med 181:435–440

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    Article  PubMed  CAS  Google Scholar 

  • Rabinowich H, Reichert TE, Kashii Y, Gastman BR, Bell MC, Whiteside TL (1998) Lymphocyte apoptosis induced by Fas- ligand expressing ovarian carcinoma cells. Implications for altered expression of T cell receptor in tumor-associated lymphocytes. J Clin Invest 101:2579–2588

    Article  PubMed  CAS  Google Scholar 

  • Rodgers S, Rees RC, Hancock BW (1994) Changes in the phenotypic characteristics of eosinophils from patients receiving recombinant human interleukin-2 (rhIL-2) therapy. Br J Haematol 86:746–753

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC (2002) Regulation of T cell receptor CD3 zeta chain expression by L-arginine. J Biol Chem 277:21123–21129

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Zea AH, DeSalvo J et al (2003) L-arginine consumption by macrophages modulates the expression of CD3zeta chain in T lymphocytes. J Immunol 171:1232–1239

    PubMed  CAS  Google Scholar 

  • Rodriguez PC, Quiceno DG, Zabaleta J et al (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64:5839–5849

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Hernandez CP, Quiceno D et al (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Quiceno DG, Ochoa AC (2007) L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Ernstoff MS, Hernandez C et al (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69:1553–1560

    Article  PubMed  CAS  Google Scholar 

  • Rotondo R, Barisione G, Mastracci L et al (2009) IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. Int J Cancer 125:887–893

    Article  PubMed  CAS  Google Scholar 

  • Rutschman R, Lang R, Hesse M, Ihle JN, Wynn TA, Murray PJ (2001) Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J Immunol 166:2173–2177

    PubMed  CAS  Google Scholar 

  • Santhanam L, Lim HK, Lim HK et al (2007) Inducible NO synthase dependent S-nitrosylation and activation of arginase1 contribute to age-related endothelial dysfunction. Circ Res 101:692–702

    Article  PubMed  CAS  Google Scholar 

  • Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 61:4756–4760

    PubMed  CAS  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  • Serafini P, Meckel K, Kelso M et al (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203:2691–2702

    Article  PubMed  CAS  Google Scholar 

  • Seung LP, Rowley DA, Dubey P, Schreiber H (1995) Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci U S A 92:6254–6258

    Article  PubMed  CAS  Google Scholar 

  • Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Sicinska E, Aifantis I, Le CL et al (2003) Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4:451–461

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Pervin S, Karimi A, Cederbaum S, Chaudhuri G (2000) Arginase activity in human breast cancer cell lines: N (omega)-hydroxy-L-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res 60:3305–3312

    PubMed  CAS  Google Scholar 

  • Sinha P, Clements VK, Ostrand-Rosenberg S (2005a) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174:636–645

    PubMed  CAS  Google Scholar 

  • Sinha P, Clements VK, Ostrand-Rosenberg S (2005b) Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res 65:11743–11751

    Article  PubMed  CAS  Google Scholar 

  • Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513

    Article  PubMed  CAS  Google Scholar 

  • Solheim JC, Reber AJ, Ashour AE et al (2007) Spleen but not tumor infiltration by dendritic and T cells is increased by intravenous adenovirus-Flt3 ligand injection. Cancer Gene Ther 14:364–371

    Article  PubMed  CAS  Google Scholar 

  • Stevenson FK (2005) Update on cancer vaccines. Curr Opin Oncol 17:573–577

    Article  PubMed  CAS  Google Scholar 

  • Suer GS, Yoruk Y, Cakir E, Yorulmaz F, Gulen S (1999) Arginase and ornithine, as markers in human non-small cell lung carcinoma. Cancer Biochem Biophys 17:125–131

    Google Scholar 

  • Taheri F, Ochoa JB, Faghiri Z et al (2001) L-Arginine regulates the expression of the T-cell receptor zeta chain (CD3zeta) in Jurkat cells. Clin Cancer Res 7:958S–965S

    PubMed  CAS  Google Scholar 

  • Talmadge JE, Hood KC, Zobel LC, Shafer LR, Coles M, Toth B (2007) Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol 7:140–151

    Article  PubMed  CAS  Google Scholar 

  • Uzzo RG, Rayman P, Kolenko V et al (1999) Mechanisms of apoptosis in T cells from patients with renal cell carcinoma. Clin Cancer Res 5:1219–1229

    PubMed  CAS  Google Scholar 

  • Van Ginderachter JA, Meerschaut S, Liu Y et al (2006) Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood 108:525–535

    Article  PubMed  CAS  Google Scholar 

  • Varesio L, Giovarelli M, Landolfo S, Forni G (1979) Suppression of proliferative response and lymphokine production during the progression of a spontaneous tumor. Cancer Res 39:4983–4988

    PubMed  CAS  Google Scholar 

  • Whiteside TL, Rabinowich H (1998) The role of Fas/FasL in immunosuppression induced by human tumors. Cancer Immunol Immunother 46:175–184

    Article  PubMed  CAS  Google Scholar 

  • Whiteside TL, Miescher S, Moretta L, von FV (1988) Cloning and proliferating precursor frequencies of tumor-infiltrating lymphocytes from human solid tumors. Transplant Proc 20:342–343

    PubMed  CAS  Google Scholar 

  • Yaman I, Fernandez J, Sarkar B et al (2002) Nutritional control of mRNA stability is mediated by a conserved AU-rich element that binds the cytoplasmic shuttling protein HuR. J Biol Chem 277:41539–41546

    Article  PubMed  CAS  Google Scholar 

  • Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802

    PubMed  CAS  Google Scholar 

  • Young MR, Newby M, Wepsic HT (1987) Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res 47:100–105

    PubMed  CAS  Google Scholar 

  • Zarour H, De SC, Lehmann F et al (1996) The majority of autologous cytolytic T-lymphocyte clones derived from peripheral blood lymphocytes of a melanoma patient recognize an antigenic peptide derived from gene Pmel17/gp100. J Invest Dermatol 107:63–67

    Article  PubMed  CAS  Google Scholar 

  • Zea AH, Curti BD, Longo DL et al (1995) Alterations in T cell receptor and signal transduction molecules in melanoma patients. Clin Cancer Res 1:1327–1335

    PubMed  CAS  Google Scholar 

  • Zea AH, Ochoa MT, Ghosh P et al (1998) Changes in expression of signal transduction proteins in T lymphocytes of patients with leprosy. Infect Immun 66:499–504

    PubMed  CAS  Google Scholar 

  • Zea AH, Rodriguez PC, Culotta KS et al (2004) l-Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cell Immunol 232:21–31

    Article  PubMed  CAS  Google Scholar 

  • Zea AH, Rodriguez PC, Atkins MB et al (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65:3044–3048

    PubMed  CAS  Google Scholar 

  • Zea AH, Culotta KS, Ali J et al (2006) Decreased expression of CD3zeta and nuclear transcription factor kappa B in patients with pulmonary tuberculosis: potential mechanisms and reversibility with treatment. J Infect Dis 194:1385–1393

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Hein TW, Wang W et al (2004) Upregulation of vascular arginase in hypertension decreases nitric oxide-mediated dilation of coronary arterioles. Hypertension 44:935–943

    Article  PubMed  CAS  Google Scholar 

  • Zhu MY, Iyo A, Piletz JE, Regunathan S (2004) Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine. Biochim Biophys Acta 1670:156–164

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/NCI Grants 5R01CA082689, 5R01CA107974 and 5P20RR021970

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto C. Ochoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rodríguez, P.C., Ochoa, A.C. (2012). Myeloid-Derived Suppressor Cells in Cancer: Mechanisms and Therapeutic Perspectives. In: Wang, R. (eds) Innate Immune Regulation and Cancer Immunotherapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9914-6_18

Download citation

Publish with us

Policies and ethics