Skip to main content

Indoleamine 2,3-Dioxygenase and Tumor-Induced Immune Suppression

  • Chapter
  • First Online:
Book cover Innate Immune Regulation and Cancer Immunotherapy
  • 1838 Accesses

Abstract

Tumors express antigens to which the immune system should, in principle, be able to respond. Yet the immune response to tumors is usually weak or absent, and is seldom curative even with the best available immunotherapy. Functionally, patients with tumors behave as if they were tolerant to their tumor antigens. This state of acquired functional tolerance must be overcome in order for immunotherapy of cancer to succeed. Expression of indoleamine 2,3-dioxygenase (IDO) is a molecular mechanism that contributes to acquired peripheral tolerance in the immune system, and has been implicated in tumor-induced tolerance. Animal models suggest that IDO helps create an immunosuppressive and tolerance-inducing milieu within the tumor and the associated tumor-draining lymph nodes. IDO directly suppresses responses by effector T cells, and also creates potent bystander suppression by enhancing the inhibitory activity of local regulatory T cells (Tregs). In preclinical models, IDO-inhibitor drugs are synergistic with a number of chemotherapeutic agents, and enhance the efficacy of anti-tumor vaccines. Further, because IDO is induced in a variety of inflammatory settings, IDO may inadvertently act as an undesirable counter-regulatory antagonist that limits the efficacy of beneficial immune activators, such as vaccine adjuvants. Strategies to block IDO may thus be synergistic with chemotherapy, and may enhance the effectiveness of other forms of anti-tumor immunotherapy. Orally-bioavailable small-molecule inhibitors of the IDO pathway, such as 1-methyl-d-tryptophan, are now entering clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DC:

Dendritic cell

IDO:

Indoleamine 2,3-dioxygenase

LN:

Lymph node

1MT:

1-Methyl-tryptophan

Tregs:

Regulatory T cells

References

  • Arefayene M, Philips S, Cao D, Mamidipalli S, Desta Z, Flockhart DA, Wilkes DS, Skaar TC (2009) Identification of genetic variants in the human indoleamine 2,3-dioxygenase (IDO1) gene, which have altered enzyme activity. Pharmacogenet Genomics 19:464–476

    Article  CAS  PubMed  Google Scholar 

  • Baban B, Hansen A, Chandler P, Manlapat A, Bingaman A, Kahler D, Munn D, Mellor A(2005) A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type 1 interferon-signaling following B7 ligation. Int Immunol 17:909–919

    Article  CAS  PubMed  Google Scholar 

  • Baban B, Chandler PR, Sharma MD, Pihkala J, Koni PA, Munn DH, Mellor AL (2009) IDO ­activates regulatory T cells and blocks their conversion into Th17-like T cells. J Immunol 183:2475–2483

    Article  CAS  PubMed  Google Scholar 

  • Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH (2009) Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol 41:467–471

    Article  CAS  PubMed  Google Scholar 

  • Belladonna ML, Orabona C, Grohmann U, Puccetti P (2009) TGF-beta and kynurenines as the key to infectious tolerance. Trends Mol Med 15:41–49

    Article  CAS  PubMed  Google Scholar 

  • Beutelspacher SC, Pillai R, Watson MP, Tan PH, Tsang J, McClure MO, George AJ, Larkin DF (2006a) Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by over-expression. Eur J Immunol 36:690–700

    Article  CAS  PubMed  Google Scholar 

  • Beutelspacher SC, Tan PH, McClure MO, Larkin DF, Lechler RI, George AJ (2006b) Expression of indoleamine 2,3-dioxygenase (IDO) by endothelial cells: implications for the control of alloresponses. Am J Transplant 6:1320–1330

    Article  CAS  PubMed  Google Scholar 

  • Boasso A, Herbeuval JP, Hardy AW, Anderson SA, Dolan MJ, Fuchs D, Shearer GM (2007) HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood 109:3351–3359

    Article  CAS  PubMed  Google Scholar 

  • Boon T, van der Bruggen P (1996) Human tumor antigens recognized by T lymphocytes. J Exp Med 183:725–729

    Article  CAS  PubMed  Google Scholar 

  • Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, Werner ER, Werner-Felmayer G, Weiss HG, Gobel G et al (2006) Prognostic value of indoleamine 2,3-­dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res 12:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Braun D, Longman RS, Albert ML (2005) A two step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic cell maturation. Blood 106:2375–2381

    Article  CAS  PubMed  Google Scholar 

  • Brenk M, Scheler M, Koch S, Neumann J, Takikawa O, Hacker G, Bieber T, von Bubnoff D (2009) Tryptophan deprivation induces inhibitory receptors ILT3 and ILT4 on dendritic cells favoring the induction of human CD4+CD25+ Foxp3+ T regulatory cells. J Immunol 183:145–154

    Article  CAS  PubMed  Google Scholar 

  • Brody JR, Costantino CL, Berger AC, Sato T, Lisanti MP, Yeo CJ, Emmons RV, Witkiewicz AK (2009) Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle 8:1930–1934

    Article  CAS  PubMed  Google Scholar 

  • Chamuleau ME, van de Loosdrecht AA, Hess CJ, Janssen JJ, Zevenbergen A, Delwel R, Valk PJ, Lowenberg B, Ossenkoppele GJ (2008) High INDO (indoleamine 2,3-dioxygenase) mRNA level in blasts of acute myeloid leukemic patients predicts poor clinical outcome. Haematologica 93:1894–1898

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Liang X, Peterson AJ, Munn DH, Blazar BR (2008) The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol 181:5396–5404

    CAS  PubMed  Google Scholar 

  • Chung DJ, Rossi M, Romano E, Ghith J, Yuan J, Munn DH, Young JW (2009) Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 114:555–563

    Article  CAS  PubMed  Google Scholar 

  • Cobbold SP, Adams E, Farquhar CA, Nolan KF, Howie D, Lui KO, Fairchild PJ, Mellor AL, Ron D, Waldmann H (2009) Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci USA 106:12055–12060

    Article  CAS  PubMed  Google Scholar 

  • Cochran AJ, Huang RR, Lee J, Itakura E, Leong SP, Essner R (2006) Tumour-induced immune modulation of sentinel lymph nodes. Nat Rev Immunol 6:659–670

    Article  CAS  PubMed  Google Scholar 

  • Corm S, Berthon C, Imbenotte M, Biggio V, Lhermitte M, Dupont C, Briche I, Quesnel B (2009) Indoleamine 2,3-dioxygenase activity of acute myeloid leukemia cells can be measured from patients’ sera by HPLC and is inducible by IFN-gamma. Leuk Res 33:490–494

    Article  CAS  PubMed  Google Scholar 

  • Cuenca A, Cheng F, Wang H, Brayer J, Horna P, Gu L, Bien H, Borrello IM, Levitsky HI, Sotomayor EM (2003) Extra-lymphatic solid tumor growth is not immunologically ignored and results in early induction of antigen-specific T-cell anergy: dominant role of cross-tolerance to tumor antigens. Cancer Res 63:9007–9015

    CAS  PubMed  Google Scholar 

  • Curti A, Aluigi M, Pandolfi S, Ferri E, Isidori A, Salvestrini V, Durelli I, Horenstein AL, Fiore F, Massaia M et al (2007a) Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. Leukemia 21:353–355

    Article  CAS  PubMed  Google Scholar 

  • Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E, Salvestrini V, Bonanno G, Rutella S, Durelli I et al (2007b) Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells. Blood 109:2871–2877

    CAS  PubMed  Google Scholar 

  • Duluc D, Delneste Y, Tan F, Moles MP, Grimaud L, Lenoir J, Preisser L, Anegon I, Catala L, Ifrah N et al (2007) Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated-macrophage-like cells. Blood 110:4319–4330

    Article  CAS  PubMed  Google Scholar 

  • Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP, Bieler JG, Emens LA, Reilly RT, Jaffee EM (2005) Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med 201:1591–1602

    Article  CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C et al (2006) The combined effects of tryptophan starvation and ­tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761

    CAS  PubMed  Google Scholar 

  • Feder-Mengus C, Wyler S, Hudolin T, Ruszat R, Bubendorf L, Chiarugi A, Pittelli M, Weber WP, Bachmann A, Gasser TC et al (2008) High expression of indoleamine 2,3-dioxygenase gene in prostate cancer. Eur J Cancer 44:2266–2275

    Article  CAS  PubMed  Google Scholar 

  • Fujigaki H, Saito K, Lin F, Fujigaki S, Takahashi K, Martin BM, Chen CY, Masuda J, Kowalak J, Takikawa O et al (2006) Nitration and inactivation of IDO by peroxynitrite. J Immunol 176:372–379

    CAS  PubMed  Google Scholar 

  • Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P, Belladonna ML, Bianchi R, Fioretti MC, Puccetti P (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3:1097–1101

    Article  CAS  PubMed  Google Scholar 

  • Grohmann U, Volpi C, Fallarino F, Bozza S, Bianchi R, Vacca C, Orabona C, Belladonna ML, Ayroldi E, Nocentini G et al (2007) Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 13:579–586

    Article  CAS  PubMed  Google Scholar 

  • Guillonneau C, Hill M, Hubert FX, Chiffoleau E, Herve C, Li XL, Heslan M, Usal C, Tesson L, Menoret S et al (2007) CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J Clin Invest 117:1096–1106

    Article  CAS  PubMed  Google Scholar 

  • Gurtner GJ, Newberry RD, Schloemann SR, McDonald KG, Stenson WF (2003) Inhibition of indoleamine 2,3-dioxygenase augments trinitrobenzene sulfonic acid colitis in mice. Gastroenterology 125:1762–1773

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Mo JH, Gong X, Rossetto C, Jang A, Beck L, Elliott GI, Kufareva I, Abagyan R, Broide DH et al (2007) 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci USA 104:18619–18624

    Article  CAS  PubMed  Google Scholar 

  • Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, Calderon B, Schraml BU, Unanue ER, Diamond MS et al (2008) Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Hou DY, Muller AJ, Sharma MD, Duhadaway JB, Banerjee T, Johnson M, Mellor AL, Prendergast GC, Munn DH (2007) Inhibition of IDO in dendritic cells by stereoisomers of 1-methyl-­tryptophan correlates with anti-tumor responses. Cancer Res 67:792–801

    Article  CAS  PubMed  Google Scholar 

  • Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H (1994) Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264:961–965

    Article  CAS  PubMed  Google Scholar 

  • Huang A, Fuchs D, Widner B, Glover C, Henderson DC, Allen-Mersh TG (2002) Serum tryptophan decrease correlates with immune activation and impaired quality of life in colorectal cancer. Br J Cancer 86:1691–1696

    Article  CAS  PubMed  Google Scholar 

  • Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA (2000) Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 164:3596–3599

    CAS  PubMed  Google Scholar 

  • Ino K, Yoshida N, Kajiyama H, Shibata K, Yamamoto E, Kidokoro K, Takahashi N, Terauchi M, Nawa A, Nomura S et al (2006) Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br J Cancer 95:1555–1561

    Article  CAS  PubMed  Google Scholar 

  • Ino K, Yamamoto E, Shibata K, Kajiyama H, Yoshida N, Terauchi M, Nawa A, Nagasaka T, Takikawa O, Kikkawa F (2008) Inverse correlation between tumoral indoleamine 2,3-dioxygenase expression and tumor-infiltrating lymphocytes in endometrial cancer: its association with disease progression and survival. Clin Cancer Res 14:2310–2317

    Article  CAS  PubMed  Google Scholar 

  • Jalili RB, Forouzandeh F, Moeenrezakhanlou A, Rayat GR, Rajotte RV, Uludag H, Ghahary A (2009) Mouse pancreatic islets are resistant to indoleamine 2,3 dioxygenase-induced general control nonderepressible-2 kinase stress pathway and maintain normal viability and function. Am J Pathol 174:196–205

    Article  CAS  PubMed  Google Scholar 

  • Jasperson LK, Bucher C, Panoskaltsis-Mortari A, Taylor PA, Mellor AL, Munn DH, Blazar BR (2008) Indoleamine 2,3-dioxygenase is a critical regulator of acute GVHD lethality. Blood 111:3257–3265

    Article  CAS  PubMed  Google Scholar 

  • Jia L, Schweikart K, Tomaszewski J, Page JG, Noker PE, Buhrow SA, Reid JM, Ames MM, Munn DH (2008) Toxicology and pharmacokinetics of 1-methyl-d-tryptophan: absence of toxicity due to saturating absorption. Food Chem Toxicol 46:203–211

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Choi BK, Kang WJ, Kim KH, Kang SW, Mellor AL, Munn DH, Kwon BS (2009) IFN-{gamma}-indoleamine-2,3 dioxygenase acts as a major suppressive factor in 4–1BB-mediated immune suppression in vivo. J Leukoc Biol 85(5):817–825

    Article  CAS  PubMed  Google Scholar 

  • Lake RA, Robinson BW (2005) Immunotherapy and chemotherapy – a practical partnership. Nat Rev Cancer 5:397–405

    Article  CAS  PubMed  Google Scholar 

  • Lee JR, Dalton RR, Messina JL, Sharma MD, Smith DM, Burgess RE, Mazzella F, Antonia SJ, Mellor AL, Munn DH (2003) Pattern of recruitment of immunoregulatory antigen presenting cells in malignant melanoma. Lab Invest 83:1457–1466

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Torisu-Itakara H, Cochran AJ, Kadison A, Huynh Y, Morton DL, Essner R (2005) Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in ­melanoma sentinel nodes. Clin Cancer Res 11:107–112

    CAS  PubMed  Google Scholar 

  • Liu H, Liu L, Fletcher BS, Visner GA (2006) Novel action of indoleamine 2,3-dioxygenase ­attenuating acute lung allograft injury. Am J Respir Crit Care Med 173:566–572

    Article  CAS  PubMed  Google Scholar 

  • Lob S, Konigsrainer A, Schafer R, Rammensee HG, Opelz G, Terness P (2008) Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood 111:2152–2154

    Article  CAS  PubMed  Google Scholar 

  • Lob S, Konigsrainer A, Rammensee HG, Opelz G, Terness P (2009a) Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer 9:445–452

    Article  PubMed  CAS  Google Scholar 

  • Lob S, Konigsrainer A, Zieker D, Brucher BL, Rammensee HG, Opelz G, Terness P (2009b) IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother 58:153–157

    Article  PubMed  CAS  Google Scholar 

  • Lurquin C, Lethe B, De Plaen E, Corbiere V, Theate I, van Baren N, Coulie PG, Boon T (2005) Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J Exp Med 201:249–257

    Article  CAS  PubMed  Google Scholar 

  • Maksimow M, Miiluniemi M, Marttila-Ichihara F, Jalkanen S, Hanninen A (2006) Antigen ­targeting to endosomal pathway in dendritic cell vaccination activates regulatory T cells and attenuates tumor immunity. Blood 108:1298–1305

    Article  CAS  PubMed  Google Scholar 

  • Manches O, Munn D, Fallahi A, Lifson J, Chaperot L, Plumas J, Bhardwaj N (2008) HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J Clin Invest 118:3431–3439

    Article  CAS  PubMed  Google Scholar 

  • Manlapat AK, Kahler DJ, Chandler PR, Munn DH, Mellor AL (2007) Cell-autonomous control of interferon type I expression by indoleamine 2,3-dioxygenase in regulatory CD19(+) dendritic cells. Eur J Immunol 37:1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Mellor AL, Munn DH (2008) Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat Rev Immunol 8:74–80

    Article  CAS  PubMed  Google Scholar 

  • Mellor AL, Baban B, Chandler P, Marshall B, Jhaver K, Hansen A, Koni PA, Iwashima M, Munn DH (2003) Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol 171:1652–1655

    CAS  PubMed  Google Scholar 

  • Mellor AL, Baban B, Chandler PR, Manlapat A, Kahler DJ, Munn DH (2005) Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN type 1 signaling. J Immunol 175:5601–5605

    CAS  PubMed  Google Scholar 

  • Metz R, Duhadaway JB, Kamasani U, Laury-Kleintop L, Muller AJ, Prendergast GC (2007) Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res 67:7082–7087

    Article  CAS  PubMed  Google Scholar 

  • Moreau M, Lestage J, Verrier D, Mormede C, Kelley KW, Dantzer R, Castanon N (2005) Bacille Calmette-Guerin inoculation induces chronic activation of peripheral and brain indoleamine 2,3-dioxygenase in mice. J Infect Dis 192:537–544

    Article  CAS  PubMed  Google Scholar 

  • Muller AJ, Scherle PA (2006) Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat Rev Cancer 6:613–625

    Article  CAS  PubMed  Google Scholar 

  • Muller AJ, Duhadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC (2005a) Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 11:312–319

    Article  CAS  PubMed  Google Scholar 

  • Muller AJ, Malachowski WP, Prendergast GC (2005b) Indoleamine 2,3-dioxygenase in cancer: targeting pathological immune tolerance with small-molecule inhibitors. Expert Opin Ther Targets 9:831–849

    Article  CAS  PubMed  Google Scholar 

  • Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 117:1147–1154

    Article  CAS  PubMed  Google Scholar 

  • Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    Article  CAS  PubMed  Google Scholar 

  • Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, Marshall B, Chandler P, Antonia SJ, Burgess R et al (2002) Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297:1867–1870

    Article  CAS  PubMed  Google Scholar 

  • Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL, Chandler P, Koni PA, Mellor A (2004a) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–290

    CAS  PubMed  Google Scholar 

  • Munn DH, Sharma MD, Mellor AL (2004b) Ligation of B7-1/B7-2 by human CD4+ T cells ­triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol 172:4100–4110

    CAS  PubMed  Google Scholar 

  • Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642

    Article  CAS  PubMed  Google Scholar 

  • Ochsenbein AF, Klenerman P, Karrer U, Ludewig B, Pericin M, Hengartner H, Zinkernagel RM (1999) Immune surveillance against a solid tumor fails because of immunological ignorance. Immunology 96:2233–2238

    CAS  Google Scholar 

  • Okamoto A, Nikaido T, Ochiai K, Takakura S, Saito M, Aoki Y, Ishii N, Yanaihara N, Yamada K, Takikawa O et al (2005) Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res 11:6030–6039

    Article  CAS  PubMed  Google Scholar 

  • Orabona C, Puccetti P, Vacca C, Bicciato S, Luchini A, Fallarino F, Bianchi R, Velardi E, Perruccio K, Velardi A et al (2006) Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood 107:2846–2854

    Article  CAS  PubMed  Google Scholar 

  • Orabona C, Pallotta MT, Volpi C, Fallarino F, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Grohmann U, Puccetti P (2008) SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Proc Natl Acad Sci USA 105:20828–20833

    Article  CAS  PubMed  Google Scholar 

  • Polak ME, Borthwick NJ, Gabriel FG, Johnson P, Higgins B, Hurren J, McCormick D, Jager MJ, Cree IA (2007) Mechanisms of local immunosuppression in cutaneous melanoma. Br J Cancer 96:1879–1887

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Villella J, Wallace PK, Mhawech-Fauceglia P, Tario JD Jr, Andrews C, Matsuzaki J, Valmori D, Ayyoub M, Frederick PJ et al (2009) Efficacy of levo-1-methyl tryptophan and dextro-1-methyl tryptophan in reversing indoleamine-2,3-dioxygenase-mediated arrest of T-cell proliferation in human epithelial ovarian cancer. Cancer Res 69(13):5498–504

    Article  CAS  PubMed  Google Scholar 

  • Quezada SA, Peggs KS, Simpson TR, Shen Y, Littman DR, Allison JP (2008) Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med 205:2125–2138

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez PC, Quiceno DG, Ochoa AC (2007) L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573

    Article  CAS  PubMed  Google Scholar 

  • Romani L, Fallarino F, De Luca A, Montagnoli C, D’Angelo C, Zelante T, Vacca C, Bistoni F, Fioretti MC, Grohmann U et al (2008) Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451:211–215

    Article  CAS  PubMed  Google Scholar 

  • Rutella S, Bonanno G, Procoli A, Mariotti A, de Ritis DG, Curti A, Danese S, Pessina G, Pandolfi S, Natoni F et al (2006) Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. Blood 108:218–227

    Article  CAS  PubMed  Google Scholar 

  • Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H, Azuma M, Blazar BR, Mellor AL, Munn DH (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117:2570–2582

    Article  CAS  PubMed  Google Scholar 

  • Sharma MD, Hou DY, Liu Y, Koni PA, Metz R, Chandler P, Mellor AL, He Y, Munn DH (2009) Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113:6102–6111

    Article  CAS  PubMed  Google Scholar 

  • Soliman HH, Antonia SJ, Sullivan D, Vanahanian N, Link C (2009) Overcoming tumor antigen anergy in human malignancies using the novel indeolamine 2,3-dioxygenase (IDO) enzyme inhibitor, 1-methyl-D-tryptophan (1MT). J Clin Oncol 27:3004

    Google Scholar 

  • Sotomayor EM, Borrello I, Rattis FM, Cuenca AG, Abrams J, Staveley-O’Carroll K, Levitsky HI (2001) Cross-presentation of tumor antigens by bone marrow-derived antigen-presenting cells is the dominant mechanism in the induction of T-cell tolerance during B-cell lymphoma progression. Blood 98:1070–1077

    Article  CAS  PubMed  Google Scholar 

  • Spiotto MT, Yu P, Rowley DA, Nishimura MI, Meredith SC, Gajewski TF, Fu YX, Schreiber H (2002) Increasing tumor antigen expression overcomes “ignorance” to solid tumors via crosspresentation by bone marrow-derived stromal cells. Immunity 17:737–747

    Article  CAS  PubMed  Google Scholar 

  • Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and ­development. Nat Rev Drug Discov 1:609–620

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto H, Oda S, Otsuki T, Hino T, Yoshida T, Shiro Y (2006) Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proc Natl Acad Sci USA 103:2611–2616

    Article  CAS  PubMed  Google Scholar 

  • Sundrud MS, Koralov SB, Feuerer M, Calado DP, Kozhaya AE, Rhule-Smith A, Lefebvre RE, Unutmaz D, Mazitschek R, Waldner H et al (2009) Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science 324:1334–1338

    Article  CAS  PubMed  Google Scholar 

  • Swanson KA, Zheng Y, Heidler KM, Mizobuchi T, Wilkes DS (2004) CDllc  +  cells modulate ­pulmonary immune responses by production of indoleamine 2,3-dioxygenase. Am J Respir Cell Mol Biol 30:311–318

    Article  CAS  PubMed  Google Scholar 

  • Tas SW, Vervoordeldonk MJ, Hajji N, Schuitemaker JH, van der Sluijs KF, May MJ, Ghosh S, Kapsenberg ML, Tak PP, de Jong EC (2007) Noncanonical NF-kappaB signaling in dendritic cells is required for indoleamine 2,3-dioxygenase (IDO) induction and immune regulation. Blood 110:1540–1549

    Article  CAS  PubMed  Google Scholar 

  • Terness P, Chuang JJ, Bauer T, Jiga L, Opelz G (2005) Regulation of human auto- and alloreactive T cells by indoleamine 2,3-dioxygenase (IDO)-producing dendritic cells: too much ado about IDO? Blood 105:2480–2486

    Article  CAS  PubMed  Google Scholar 

  • Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van Den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    Article  CAS  PubMed  Google Scholar 

  • Vacca C, Fallarino F, Perruccio K, Orabona C, Bianchi R, Gizzi S, Velardi A, Fioretti MC, Puccetti P, Grohmann U (2005) CD40 ligation prevents onset of tolerogenic properties in human dendritic cells treated with CTLA-4-Ig. Microbes Infect 7:1040–1048

    Article  CAS  PubMed  Google Scholar 

  • van der Marel AP, Samsom JN, Greuter M, van Berkel LA, O’Toole T, Kraal G, Mebius RE (2007) Blockade of IDO inhibits nasal tolerance induction. J Immunol 179:894–900

    PubMed  Google Scholar 

  • von Bergwelt-Baildon MS, Popov A, Saric T, Chemnitz J, Classen S, Stoffel MS, Fiore F, Roth U, Beyer M, Debey S et al (2006) CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood 108:228–237

    Article  CAS  Google Scholar 

  • Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11

    Article  CAS  PubMed  Google Scholar 

  • Williams KM, Hakim FT, Gress RE (2007) T cell immune reconstitution following lymphodepletion. Semin Immunol 19:318–330

    Article  CAS  PubMed  Google Scholar 

  • Willimsky G, Czeh M, Loddenkemper C, Gellermann J, Schmidt K, Wust P, Stein H, Blankenstein T (2008) Immunogenicity of premalignant lesions is the primary cause of general cytotoxic T lymphocyte unresponsiveness. J Exp Med 205:1687–1700

    Article  CAS  PubMed  Google Scholar 

  • Witkiewicz A, Williams TK, Cozzitorto J, Durkan B, Showalter SL, Yeo CJ, Brody JR (2008) Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. J Am Coll Surg 206:849–854; discussion 854–846

    Article  PubMed  Google Scholar 

  • Witkiewicz AK, Costantino CL, Metz R, Muller AJ, Prendergast GC, Yeo CJ, Brody JR (2009) Genotyping and expression analysis of IDO2 in human pancreatic cancer: a novel, active target. J Am Coll Surg 208:781–787; discussion 787–789

    Article  PubMed  Google Scholar 

  • Wobser M, Voigt H, Houben R, Eggert AO, Freiwald M, Kaemmerer U, Kaempgen E, Schrama D, Becker JC (2007) Dendritic cell based antitumor vaccination: impact of functional indoleamine 2,3-dioxygenase expression. Cancer Immunol Immunother 56:1017–1024

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Lee Y, Liu W, Krausz T, Chong A, Schreiber H, Fu YX (2005) Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 201:779–791

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Drake CG, Levitsky HI (2006) Amplification of tumor-specific regulatory T cells ­following therapeutic cancer vaccines. Blood 107:628–636

    Article  CAS  PubMed  Google Scholar 

  • Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer ­chemotherapy. Nat Rev Immunol 8:59–73

    Article  CAS  PubMed  Google Scholar 

  • Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Munn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Munn, D.H. (2012). Indoleamine 2,3-Dioxygenase and Tumor-Induced Immune Suppression. In: Wang, R. (eds) Innate Immune Regulation and Cancer Immunotherapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9914-6_17

Download citation

Publish with us

Policies and ethics