Skip to main content

How to Integrate Any Real Function

  • Chapter
  • First Online:
Book cover Hypernumbers and Extrafunctions

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 835 Accesses

Abstract

In this chapter, we study problems of integration, demonstrating the advantages that transition to hypernumbers and extrafunctions gives for this field. It is well known that it is possible to integrate only some real functions. Shenitzer and Steprāns (1994) explain that while in the eyes of some mathematicians the Lebesgue integral was the final answer to the difficulties associated with integration and there is no perfect integral, there were others who were not willing to give up the search for the perfect integral, one which would make all functions integrable. Although efforts of different mathematicians extended the scope of integrable functions, their results only gave additional evidence for impossibility of such a perfect integral.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abian, A.: The theory of sets and transfinite arithmetic. W.B. Saunders Company, Philadelphia (1965)

    MATH  Google Scholar 

  • Antosik, P., Mikulinski, J., Sikorski, R.: Theory of distributions. Elsevier, Amsterdam (1973)

    MATH  Google Scholar 

  • Bartle, R.G.: A modern theory of integration. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  • Burgin, M.: Hypermeasures and hyperintegration. Not. Nat. Acad. Sci. Ukr. (in Russian and Ukrainian) 6, 10–13 (1990)

    Google Scholar 

  • Burgin, M.: On the Han-Banach theorem for hyperfunctionals. Not. Nat. Acad. Sci. Ukr. (in Russian and Ukrainian) 7, 9–14 (1991)

    Google Scholar 

  • Burgin, M.: Integral calculus for extrafunctions. Not. Nat. Acad. Sci. Ukr. 11, 14–17 (1995)

    MathSciNet  Google Scholar 

  • Burgin, M.: Hyperfunctionals and generalized distributions. In: Krinik, A.C., Swift, R.J. (eds.) Stochastic processes and functional analysis, a Dekker series of lecture notes in pure and applied mathematics, vol. 238, pp. 81–119. CRC Press, Boca Raton, FL (2004)

    Google Scholar 

  • Burgin, M.: Neoclassical analysis: calculus closer to the real world. Nova Science Publishers, Hauppauge, NY (2008a)

    Google Scholar 

  • Burgin, M.: Hyperintegration approach to the feynman integral. Integr.: Math. Theory. Appl. 1, 59–104 (2008/2009)

    Google Scholar 

  • Church, A.: Introduction to mathematical logic. Princeton University Press, Princeton (1956)

    MATH  Google Scholar 

  • Feynman, R.P.: Space–time approach to non–relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)

    Article  MathSciNet  Google Scholar 

  • Feynman, R.P., Hibbs, A.R.: Quantum mechanics and path integrals. McGraw-Hill Companies, New York (1965)

    MATH  Google Scholar 

  • Gemignani, M.: Introduction to real analysis. W.B. Saunders Co., London (1971)

    MATH  Google Scholar 

  • Henstock, R.: Lectures on the theory of integration, series in real analysis, vol. 1. World Scientific, London (1988)

    Google Scholar 

  • Ito, K.: On a stochastic integral equation. Proc. Imp. Acad. Tokyo 20, 519–524 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  • Kelly, J.L.: General topology. Van Nostrand Co., Princeton (1955)

    Google Scholar 

  • Kolmogoroff, A.N.: La définition axiomatique l'intégrale. C. R. Acad. Sci. Paris 180, 110–111 (1925)

    MATH  Google Scholar 

  • Kolmogoroff, A.N.: Untersuchungen über integralbegriff. Math. Ann. 103, 654–696 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  • Kurzweil, J.: Integration between the lebesgue integral and the henstock-kurzweil integral: its relation to locally convex vector spaces, series in real analysis, vol. 8. World Scientific, New Jersey (2002)

    Google Scholar 

  • Protter, P.E.: Stochastic integration and differential equations. Springer, New York (2004)

    MATH  Google Scholar 

  • Ross, K.A.: Elementary analysis: the theory of calculus. Springer, New York (1996)

    Google Scholar 

  • Schwartz, L.: Théorie des Distributions. vol. I-II, Hermann, Paris (1950/1951)

    Google Scholar 

  • Shenitzer, A., Steprāns, J.: The evolution of integration. Am. Math. Mon. 101(1), 66–72 (1994)

    Article  MATH  Google Scholar 

  • Swartz, C. W., Kurtz, D. S.: Theories of integration : the integrals of Riemann, Lebesgue, Henstock-Kurzweil, and McShane. Series in real analysis, v. 9, World Scientific, New Jersey/London/Singapore (2004)

    Google Scholar 

  • Wiener, N.: The average of an analytical functional. Proc. Nat. Acad. Sci. USA 7, 253–260 (1921)

    Article  Google Scholar 

  • Yeh, J.: Stochastic processes and the wiener integral, pure and applied mathematics, vol. 13. Marcel Dekker, Inc., New York (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Mark Burgin

About this chapter

Cite this chapter

Burgin, M. (2012). How to Integrate Any Real Function. In: Hypernumbers and Extrafunctions. SpringerBriefs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9875-0_5

Download citation

Publish with us

Policies and ethics