Skip to main content

Factors Affecting Nanoindentation Test Data

  • Chapter
  • First Online:
Nanoindentation

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

In conventional indentation tests, the area of contact between the indenter and the specimen at maximum load is usually calculated from the diameter or size of the residual impression after the load has been removed. The size of the residual impression is usually considered to be identical to the contact area at full load, although the depth of penetration may of course be significantly reduced by elastic recovery. Direct imaging of residual impressions made in the submicron regime are usually only possible using inconvenient means and, for this reason, it is usual to measure the load and depth of penetration directly during loading and unloading of the indenter. These measurements are then used to determine the projected area of contact for the purpose of calculating hardness and elastic modulus. In practice, various errors are associated with this procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.M. Jennett and J. Meneve, “Depth sensing indentation of thin hard films: a study of modulus measurement sensitivity to indentation parameters,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 239–244.

    Article  Google Scholar 

  2. G. Feng and A.H.W. Ngan, “Effects of creep and thermal drift on modulus measurement using depth-sensing indentation,” J. Mater. Res. 17 3, 2002, pp. 660–668.

    Article  Google Scholar 

  3. A.C. Fischer-Cripps, unpublished work, 2003.

    Google Scholar 

  4. B.R. Lawn, B.J. Hockey and S.M. Weiderhorn, “Thermal effects in sharp-particle impact,” J. Amer. Ceram. Soc. 63 5–6, 1980, pp. 356–358.

    Article  Google Scholar 

  5. K. Herrmann K, N.M. Jennett, W. Wegener, J. Meneve, K. Hasche, and R. Seemann, “Progress in determination of the area function of indenters used for nanoindentation,” Thin Solid Films, 377, 2000, pp. 394–400.

    Article  Google Scholar 

  6. S. Enders, P. Grau, and H.M. Hawthorne, “Determination of the real indenter shape for nanoindentation/nanotribology tests by surface metrological and analytical investigations,” Mat. Res. Soc. Symp. Proc. 649, 2001, pp. Q3.6.1–Q3.6.6.

    Google Scholar 

  7. R.N. Bolster, unpublished work.

    Google Scholar 

  8. A. Bolshakov and G.M. Pharr, “Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques,” J. Mater. Res. 13 4, 1998, pp. 1049–1058.

    Article  Google Scholar 

  9. J.L. Hay, W.C. Oliver, A. Bolshakov, and G.M. Pharr “Using the ratio of loading slope and elastic stiffness to predict pile-up and constraint factor during indentation,” Mat. Res. Proc. Symp. 522, 1998, pp. 101–106.

    Article  Google Scholar 

  10. N.X. Randall and C. Julia-Schmutz, “Evolution of contact area and pile-up during the nanoindentation of soft coatings on hard substrates.” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 21–26.

    Article  Google Scholar 

  11. K.W. McElhaney, J.J. Vlassak, and W.D. Nix, “Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments,” J. Mater. Res. 13 5, 1998, pp. 1300–1306.

    Article  Google Scholar 

  12. Y. Choi, H-S Lee, and D. Kwon, “Analysis of sharp-tip indentation load-depth curve for contact area determination taking into account pile-up and sink-in effects,” J. Mater. Res. 19 11, 2004, pp. 3307–3315.

    Article  Google Scholar 

  13. Y.-T. Cheng, Z. Li, and C.-M. Cheng, “Scaling relationships for indentation measurements,” Phil. Mag. A 82, 2002, pp.1821–1829.

    Article  Google Scholar 

  14. H. Li, A. Ghosh, Y.H. Yan, and R.C. Bradt, “The frictional component of the indentation size effect in low load microhardness testing,” J. Mater. Res. 8 5, 1993, pp. 1028–1032.

    Article  Google Scholar 

  15. N. Gane, “The direct measurement of the strength of metals on a sub-micrometre scale,” Proc. R. Soc. A317, 1970, pp. 367–391.

    Article  Google Scholar 

  16. S.J. Bull, T.F. Page, and E.H. Yoffe, “An explanation of the indentation size effects in ceramics,” Phil. Mag. Lett. 59 6, 1989, pp. 281–288.

    Article  Google Scholar 

  17. W.D. Nix and H. Gao, “Indentation size effects in crystalline materials: a law for strain gradient plasticity,” J. Mech. Phys. Solids, 46 3, 1998, pp. 411–425.

    Article  MATH  Google Scholar 

  18. J. Lou, P. Shrotriya, T. Buchheit, D. Yang and W.O. Sobojeyo, “Nanoindentation study of plasticity length scale effects in LIGA Ni microelectromechanical systems structures,” J. Mater. Res. 18 3, 2003, pp. 719–728.

    Article  Google Scholar 

  19. E.T. Lilleodden, J.A. Zimmerman, S.M. Foiles, and W.D. Nix, “Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation,” J. Mech. Phys. Solids, 51, 2003, pp. 201–920.

    Article  Google Scholar 

  20. N.I. Tymiak, D.E. Kramer, D.F. Bahr, T.J. Wyrobek and W.W. Gerberich, “Plastic strain and strain gradients at very small indentation depths,” Acta Mater. 49, 2001, pp. 1021–1034.

    Article  Google Scholar 

  21. T.-Y. Zhang and W.-H. Zu, “Surface effects on nanoindentation,” J. Mater. Res. 17 7, 2002, pp. 1715–1720.

    Article  Google Scholar 

  22. J.F. Archard, “Elastic deformations and the law of friction,” Proc. R. Soc. A243, 1957, pp. 190–205.

    Article  Google Scholar 

  23. J.A. Greenwood and J.B.P. Williamson, “Contact of nominally flat surfaces,” Proc. R. Soc. A295, 1966, pp. 300–319.

    Article  Google Scholar 

  24. J.A. Greenwood and J.H. Tripp, “The contact of two nominally rough surfaces,” Proc. Inst. Mech. Eng. 185, 1971, pp. 625–633.

    Article  Google Scholar 

  25. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.

    Book  MATH  Google Scholar 

  26. D.L. Joslin and W.C. Oliver, “A new method for analyzing data from continuous depth-sensing microindentation tests,” J. Mater. Res. 5 1, 1990, pp. 123–126.

    Article  Google Scholar 

  27. J.S. Field, “Understanding the penetration resistance of modified surface layers,” Surf. Coat. Tech. 36, 1988, pp. 817–827.

    Article  Google Scholar 

  28. A.C. Fischer-Cripps, “The sharpness of a Berkovich indenter.” J.Mater.Res. 25, 5, 2010, pp. 927–934.

    Article  Google Scholar 

  29. W.A. Caw, “The elastic behaviour of a sharp obtuse wedge impressed on a plane,” J. Sci. Instr., J. Physics E, 2 2, 1969, pp. 73–78.

    Article  Google Scholar 

  30. T.Y. Tsui, W.C. Oliver, and G.M. Pharr, “Influences of stress on the measurement of mechanical properties using nanoindentation. 1. Experimental studies in an aluminium alloy,” J. Mater. Res. 11 3, 1996, pp. 752–759.

    Article  Google Scholar 

  31. K.O. Kese, Z.C. Li, and B. Bergman, “Influence of residual stress on elastic modulus and hardness of soda-lime glass measured by nanoindentation,” J. Mater. Res. 19 10, 2004, pp. 3109–3119.

    Article  Google Scholar 

  32. W.-J. Chou, G.-P. Yu, and J.-H. Huang, “Effect of heat treatment on the structure and properties of ion-plated TiN films”, Surf. Coat. Technol. 168, 2003, pp. 43–50.

    Article  Google Scholar 

  33. C.-H. Ma, J.-H. Huang, and H. Chen, Surf. Coat. Technol., to be published.

    Google Scholar 

  34. A.C. Fischer-Cripps, unpublished work.

    Google Scholar 

  35. V. Brizmer, Y. Zait, Y. Kligerman and I. Etsion, “The effect of contact conditions and material properties on elastic-plastic spherical contact,” J. Mech. Mat. Struct. 1 5, 2006, pp. 865–879.

    Article  Google Scholar 

  36. A.C. Fischer-Cripps, Introduction to contact mechanics, 2nd Ed. Springer-Verlag, New York, 2007.

    Book  MATH  Google Scholar 

  37. Y.P. Zhao, X. Shi, and W.J. Li, “Effect of work of adhesion on nanoindentation,” Rev. Adv. Mater. Sci. 5, 2003, pp. 348–353.

    Google Scholar 

  38. F.B. Langitan and B.R. Lawn, “Hertzian fracture experiments on abraded glass surfaces as definitive evidence for an energy balance explanation of Auerbach’s law,” J. App. Phys. 40 10, 1969, pp. 4009–4017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. Fischer-Cripps .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fischer-Cripps, A.C. (2011). Factors Affecting Nanoindentation Test Data. In: Nanoindentation. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9872-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9872-9_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9871-2

  • Online ISBN: 978-1-4419-9872-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics