Skip to main content

A Multiparametric Imaging of Cellular Coenzymes for Monitoring Metabolic and Mitochondrial Activities

  • Chapter
  • First Online:

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2010))

Abstract

Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) are electron carriers that play important roles in a wide range of metabolic activities and mitochondrial functions in eukaryotic cells. NADH and FAD are naturally fluorescent with distinct illumination/emission wavelengths for selective detection. Their autofluorescence is also sensitive to protein binding and local environment. As a result, these intracellular coenzymes have potential as intrinsic biomarkers for a noninvasive imaging of metabolic activities and oxidation–reduction reactions in living cells either in vitro, ex vivo, or in vivo. This chapter highlights recent findings of these coenzymes as natural biomarkers of metabolic and mitochondrial activities with an emphasis on a multiparametric imaging approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Heikal AA (2010) Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark Med 4:241–263

    Article  PubMed  CAS  Google Scholar 

  2. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  3. Christen Y (2000) Oxidative stress and Alzheimer disease. Am J Clin Nutr 71:621S–629S

    PubMed  CAS  Google Scholar 

  4. Jacquard C, Trioulier Y, Cosker F, Escartin C, Bizat N, Hantraye P, Cancela JM, Bonvento G, Brouillet E (2006) Brain mitochondrial defects amplify intracellular [Ca2+] rise and neurodegeneration but not Ca2+ entry during NMDA receptor activation. FASEB J 20:1021–1023

    Article  PubMed  CAS  Google Scholar 

  5. Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 25:365–451

    Article  PubMed  CAS  Google Scholar 

  6. Duchen MR (2004) Roles of mitochondria in health and disease. Diabetes 53(Suppl 1): S96–S102

    Article  PubMed  CAS  Google Scholar 

  7. Chance B (1976) Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of Mitochondria. Circ Res 38(5 Suppl 1):I31–I38

    PubMed  CAS  Google Scholar 

  8. Chance B, Cohen P, Jobsis F, Schoener B (1962) Intracellular oxidation-reduction states in vivo. Science 137:499–508

    Article  PubMed  CAS  Google Scholar 

  9. Chance B, Jamieson D, Coles H (1965) Energy-linked pyridine nucleotide reduction: inhibitory effects of hyperbaric oxygen in vitro and in vivo. Nature 206:257–263

    Article  PubMed  CAS  Google Scholar 

  10. Chance B, Legallais V, Schoener B (1962) Metabolically linked changes in fluorescence emission spectra of cortex of rat brain, kidney and adrenal gland. Nature 195:1073–1075

    Article  PubMed  CAS  Google Scholar 

  11. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. II. Difference spectra. J Biol Chem 217:395–407

    PubMed  CAS  Google Scholar 

  12. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 217:383–393

    PubMed  CAS  Google Scholar 

  13. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem 217:409–427

    PubMed  CAS  Google Scholar 

  14. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. IV. The respiratory chain. J Biol Chem 217:429–438

    PubMed  CAS  Google Scholar 

  15. Chance B, Williams GR, Holmes WF, Higgins J (1955) Respiratory enzymes in oxidative phosphorylation. V. A mechanism for oxidative phosphorylation. J Biol Chem 217:439–451

    PubMed  CAS  Google Scholar 

  16. Stryer L (1999) Biochemistry. W. H. Freeman and Company, New York

    Google Scholar 

  17. Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206

    Article  PubMed  CAS  Google Scholar 

  18. Klaidman LK, Leung AC, Adams JD Jr (1995) High-performance liquid chromatography analysis of oxidized and reduced pyridine dinucleotides in specific brain regions. Anal Biochem 228:312–317

    Article  PubMed  CAS  Google Scholar 

  19. Glassman WS, Steinberg M, Alfano RR (1994) Time resolved and steady state fluorescence spectroscopy from normal and malignant cultured human breast cell lines. Lasers Life Sci 6:91–98

    Google Scholar 

  20. Palmer GM, Keely PJ, Breslin TM, Ramanujam N (2003) Autofluorescence spectroscopy of normal and malignant human breast cell lines. Photochem Photobiol 78:462–469

    Article  PubMed  CAS  Google Scholar 

  21. Kunz WS, Kunz W (1985) Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria. Biochim Biophys Acta 841:237–246

    Article  PubMed  CAS  Google Scholar 

  22. Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and micro­scopy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825

    Article  PubMed  CAS  Google Scholar 

  23. Benson RC, Meyer RA, Zaruba ME, McKhann GM (1979) Cellular autofluorescence – is it due to flavins? J Histochem Cytochem 27:44–48

    Article  PubMed  CAS  Google Scholar 

  24. Müller F (1991) Chemistry and biochemistry of flavoenzymes. CRC, Boca Raton, FL

    Google Scholar 

  25. Rocheleau J, Head WS, Piston D (2003) Two-photon NAD(P)H and one-photon flavoprotein autofluorescence imaging to examine the metabolic mechanisms of pancreatic islet beta-cell function. Microsc Microanal 9:218–219

    Google Scholar 

  26. Chorvat D Jr, Kirchnerova J, Cagalinec M, Smolka J, Mateasik A, Chorvatova A (2005) Spectral unmixing of flavin autofluorescence components in cardiac myocytes. Biophys J 89: L55–L57

    Article  PubMed  CAS  Google Scholar 

  27. Romashko DN, Marban E, O’Rourke B (1998) Subcellular metabolic transients and mitochondrial redox waves in heart cells. Proc Natl Acad Sci USA 95:1618–1623

    Article  PubMed  CAS  Google Scholar 

  28. Modica-Napolitano JS, Singh KK (2004) Mitochondrial dysfunction in cancer. Mitochondrion 4:755–762

    Article  PubMed  CAS  Google Scholar 

  29. Scheffler IE (1999) Mitochondria. Wiley-Liss, New York

    Book  Google Scholar 

  30. Gore M, Ibbott F, Mc IH (1950) The cozymase of mammalian brain. Biochem J 47:121–127

    PubMed  CAS  Google Scholar 

  31. Sporty JL, Kabir MM, Turteltaub KW, Ognibene T, Lin SJ, Bench G (2008) Single sample extraction protocol for the quantification of NAD and NADH redox states in Saccharomyces cerevisiae. J Sep Sci 31:3202–3211

    Article  PubMed  CAS  Google Scholar 

  32. Britz-McKibbin P, Markuszewski MJ, Iyanagi T, Matsuda K, Nishioka T, Terabe S (2003) Picomolar analysis of flavins in biological samples by dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection. Anal Biochem 313:89–96

    Article  PubMed  CAS  Google Scholar 

  33. Uppal A, Gupta PK (2003) Measurements of NADH concentration in normal and malignant human tissues from breast and oral cavity. Biotechnol Appl Biochem 37:45–50

    Article  PubMed  CAS  Google Scholar 

  34. Giblin FJ, Reddy VN (1980) Pyridine nucleotides in ocular tissues as determined by the cycling assay. Exp Eye Res 31:601–609

    Article  PubMed  CAS  Google Scholar 

  35. Matsumura H, Miyachi S (1980) Cycling assay for nicotinamide adenine dinucleotides. Methods Enzymol 69:465–470

    Article  CAS  Google Scholar 

  36. Umemura K, Kimura H (2005) Determination of oxidized and reduced nicotinamide adenine dinucleotide in cell monolayers using a single extraction procedure and a spectrophotometric assay. Anal Biochem 338:131–135

    Article  PubMed  CAS  Google Scholar 

  37. Xie W, Xu A, Yeung ES (2009) Determination of NAD(+) and NADH in a single cell under hydrogen peroxide stress by capillary electrophoresis. Anal Chem 81:1280–1284

    Article  PubMed  CAS  Google Scholar 

  38. Stanley PE (1971) Determination of subpicomole levels of NADH and FMN using bacterial luciferase and the liquid scintillation spectrometer. Anal Biochem 39:441–453

    Article  PubMed  CAS  Google Scholar 

  39. Jones JB, Song JJ, Hempen PM, Parmigiani G, Hruban RH, Kern SE (2001) Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass”-ive advantage over detection of nuclear DNA mutations. Cancer Res 61:1299–1304

    PubMed  CAS  Google Scholar 

  40. Armstrong JS (2006) Mitochondria: a target for cancer therapy. Br J Phamcol 147:239–248

    Article  CAS  Google Scholar 

  41. Flescher E (2007) Jasmonates in cancer therapy. Cancer Lett 245:1–10

    Article  PubMed  CAS  Google Scholar 

  42. Neuzil J, Dong LF, Ramnathapuram L, Hahn T, Chladova M, Wang XF, Zobalova R, Prochazka L, Gold M, Freeman R, Turanek J, Akporiaye ET, Dyason JC, Ralph SJ (2007) Vitamin E analogues as a novel group of mitocans: anti-cancer agents that act by targeting mitochondria. Mol Aspects Med 28:607–645

    Article  PubMed  CAS  Google Scholar 

  43. Kagan VE, Bayir A, Bayir H, Stoyanovsky D, Borisenko GG, Tyurina YY, Wipf P, Atkinson J, Greenberger JS, Chapkin RS, Belikova NA (2009) Mitochondria-targeted disruptors and inhibitors of cytochrome c/cardiolipin peroxidase complexes: a new strategy in anti-apoptotic drug discovery. Mol Nutr Food Res 53:104–114

    Article  PubMed  CAS  Google Scholar 

  44. Szeto HH (2006) Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J 8:E521–E531

    Article  PubMed  CAS  Google Scholar 

  45. Harper JA, Dickinson K, Brand MD (2001) Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obes Rev 2:255–265

    Article  PubMed  CAS  Google Scholar 

  46. Villette S, Pigaglio-Deshayes S, Vever-Bizet C, Validire P, Bourg-Heckly G (2006) Ultraviolet-induced autofluorescence characterization of normal and tumoral esophageal epithelium cells with quantitation of NAD(P)H. Photochem Photobiol Sci 5:483–492

    Article  PubMed  CAS  Google Scholar 

  47. Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, Ramanujam N (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci USA 104(49):19494–19499

    Article  PubMed  CAS  Google Scholar 

  48. Skala MC, Riching KM, Bird DK, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, Keely PJ, Ramanujam N (2007) In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J Biomed Opt 12:024014

    Article  PubMed  CAS  Google Scholar 

  49. Tilton RG, Baier LD, Harlow JE, Smith SR, Ostrow E, Williamson JR (1992) Diabetes-induced glomerular dysfunction: Links to a more reduced cytosolic ratio of NADH/NAD+. Kidney Int 41:778–788

    Article  PubMed  CAS  Google Scholar 

  50. Dukes ID, McIntyre MS, Mertz RJ, Philipson LH, Roe MW, Spencer B, Worley JF 3rd (1994) Dependence on NADH produced during glycolysis for beta-cell glucose signaling. J Biol Chem 269:10979–10982

    PubMed  CAS  Google Scholar 

  51. Ido Y, Kilo C, Williamson JR (1997) Cytosolic NADH/NAD+, free radicals, and vascular dysfunction in early diabetes mellitus. Diabetologia 40:S115–S117

    Article  PubMed  CAS  Google Scholar 

  52. Rocheleau JV, Head WS, Piston DW (2004) Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response. J Biol Chem 279:31780–31787

    Article  PubMed  CAS  Google Scholar 

  53. Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T (1999) Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 283:981–985

    Article  PubMed  CAS  Google Scholar 

  54. Winstead JA, Moss SA (1972) Gamma-irradiated flavin adenine dinucleotide: a D-amino acid oxidase inhibitor. Radiat Res 52:520–527

    Article  PubMed  CAS  Google Scholar 

  55. Chance B (1954) Spectrophotometry of intracellular respiratory pigments. Science 120: 767–775

    Article  PubMed  CAS  Google Scholar 

  56. Chorvat DC (2006) Spectrally resolved time-correlated single photon counting: a novel approach for characterization of endogenous fluorescence in isolated cardiac myocytes. Eur Biophys J 36:73–83

    Article  PubMed  Google Scholar 

  57. Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt So Am B 13:481–491

    Article  CAS  Google Scholar 

  58. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    Article  PubMed  CAS  Google Scholar 

  59. Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100:7075–7080

    Article  PubMed  CAS  Google Scholar 

  60. Bhawalkar JD, Shih A, Pan SJ, Liou WS, Swiatkiewicz J, Reinhardt BA, Prasad PN, Cheng PC (1996) Two-photon laser scanning fluorescence microscopy-from a fluorophore and specimen perspective. Bioimaging 4:168–178

    Article  CAS  Google Scholar 

  61. Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens that confocal imaging. Biophys J 75:2015–2024

    Article  PubMed  CAS  Google Scholar 

  62. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 245:73–76

    Article  Google Scholar 

  63. Masters BR, So PT (2004) Antecedents of two-photon excitation laser scanning microscopy. Microsc Res Tech 63:3–11

    Article  PubMed  CAS  Google Scholar 

  64. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    Article  PubMed  CAS  Google Scholar 

  65. Duysens LN, Amesz J (1957) Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim Biophys Acta 24:19–26

    Article  PubMed  CAS  Google Scholar 

  66. Uppal A, Ghosh N, Datta A, Gupta PK (2005) Fluorimetric estimation of the concentration of NADH from human blood samples. Biotechnol Appl Biochem 41:43–47

    Article  PubMed  CAS  Google Scholar 

  67. Papadopoulos AJ, Zhadin NN, Steinberg ML, Alfano RR (1999) Fluorescence spectroscopy of normal, SV40-transformed human keratinocytes, and carcinoma cells. Cancer Biochem Biophys 17:13–23

    PubMed  CAS  Google Scholar 

  68. Croce AC, Ferrigno A, Vairetti M, Bertone R, Freitasa I, Bottirolia G (2004) Autofluorescence properties of isolated rat hepatocytes under different metabolic conditions. Photochem Photobiol Sci 3:920–926

    Article  PubMed  CAS  Google Scholar 

  69. Ranji M, Kanemoto S, Matsubara M, Grosso MA, Gorman JH 3rd, Gorman RC, Jaggard DL, Chance B (2006) Fluorescence spectroscopy and imaging of myocardial apoptosis. J Biomed Opt 11:064036

    Article  PubMed  CAS  Google Scholar 

  70. Pogue BW, Pitts JD, Mycek MA, Sloboda RD, Wilmot CM, Brandsema JF, O’Hara JA (2001) In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy. Photochem Photobiol 74:817–824

    Article  PubMed  CAS  Google Scholar 

  71. Ariola FS, Mudaliar DJ, Walvick RP, Heikal AA (2006) Dynamics imaging of lipid phases and lipid-marker interactions in model biomembranes. Phys Chem Chem Phys 8:4517–4529

    Article  PubMed  CAS  Google Scholar 

  72. Yu Q, Heikal AA (2009) Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. J Photochem Photobiol B 95:46–57

    Article  PubMed  CAS  Google Scholar 

  73. Mayevsky A (2009) Mitochondrial function and energy metabolism in cancer cells: Past overview and future perspectives. Mitochondrion 9:165–179

    Article  PubMed  CAS  Google Scholar 

  74. Masters BR, So PTC (2001) Confocal microscopy and multi-photon excitation microscopy of human skin in vivo. Opt Express 8:1–10

    Article  Google Scholar 

  75. Brecht M, Fee MS, Garaschuk O, Helmchen F, Margrie TW, Svoboda K, Osten P (2004) Novel approaches to monitor and manipulate single neurons in vivo. J Neurosci 24:9223–9227

    Article  PubMed  CAS  Google Scholar 

  76. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  PubMed  CAS  Google Scholar 

  77. Jung JC, Mehta AD, Aksay E, Stepnoski R, Schnitzer MJ (2004) In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J Neurophysiol 92:3121–3133

    Article  PubMed  Google Scholar 

  78. Lin SX, Maxfield FR (2004) Fluorescence imaging in living animals. Focus on uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy. Am J Physiol Cell Physiol 287:C257–C259

    Article  PubMed  CAS  Google Scholar 

  79. Atkinson RJ, Shorthouse AJ, Hurlstone DP (2007) Novel colorectal endoscopic in vivo imaging and resection practice: A short practice guide for interventional endoscopists. Tech Coloproctol 11:7–16

    Article  PubMed  CAS  Google Scholar 

  80. Hogan MC, Stary CM, Balaban RS, Combs CA (2005) NAD(P)H fluorescence imaging of mitochondrial metabolism in contracting Xenopus skeletal muscle fibers: effect of oxygen availability. J Appl Physiol 98:1420–1426

    Article  PubMed  CAS  Google Scholar 

  81. Shuttleworth CW, Brennan AM, Connor JA (2003) NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices. J Neurosci 23:3196–3208

    PubMed  CAS  Google Scholar 

  82. Reinert KC, Dunbar RL, Gao W, Chen G, Ebner TJ (2004) Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo. J Neurophysiol 92:199–211

    Article  PubMed  CAS  Google Scholar 

  83. Reinert KC, Gao W, Chen G, Ebner TJ (2007) Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo. J Neurosci Res 85:3221–3232

    Article  PubMed  CAS  Google Scholar 

  84. Williams RM, Piston DW, Webb WW (1994) Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J 8:804–813

    PubMed  CAS  Google Scholar 

  85. Gniadecki R, Thorn T, Vicanova J, Petersen A, Wulf HC (2000) Role of mitochondria in ultraviolet-induced oxidative stress. J Cell Biochem 80:216–222

    Article  PubMed  CAS  Google Scholar 

  86. Lisby S, Gniadecki R, Wulf HC (2005) UV-induced DNA damage in human keratinocytes: quantitation and correlation with long-term survival. Exp Dermatol 14:349–355

    Article  PubMed  CAS  Google Scholar 

  87. Nichols MG, Barth EE, Nichols JA (2005) Reduction in DNA synthesis during two-photon microscopy of intrinsic reduced nicotinamide adenine dinucleotide fluorescence. Photochem Photobiol 81:259–269

    Article  PubMed  CAS  Google Scholar 

  88. Perriott LM, Kono T, Whitshell RR, Knobel SM, Piston DW, Granner DK, Powers AC, May JM (2001) Gluocose uptake and metabolism by cultured human skeletal muscle cells: rate-limiting steps. Am J Physiol Endocrinol Metab 281:E72–E80

    PubMed  CAS  Google Scholar 

  89. Kable EPW, Kiemer AK (2005) Non-invasive live-cell measurement of changes in macrophage NAD(P)H by two-photon microscopy. Immunol Lett 96:33–38

    Article  PubMed  CAS  Google Scholar 

  90. Bennett BD, Jetton TL, Ying G, Magnuson MA, Piston DW (1996) Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J Biol Chem 271:3647–3651

    Article  PubMed  CAS  Google Scholar 

  91. Vishwasrao HD, Heikal AA, Kasischke KA, Webb WW (2005) Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. J Biol Chem 280:25119–25126

    Article  PubMed  CAS  Google Scholar 

  92. Tiede LM, Rocha-Sanchez SM, Hallworth R, Nichols MG, Beisel K (2007) Determination of hair cell metabolic state in isolated cochlear preparations by two-photon microscopy. J Biomed Opt 12:021004

    Article  PubMed  CAS  Google Scholar 

  93. Rothstein EC, Carroll S, Combs CA, Jobsis PD, Balaban RS (2005) Skeletal muscle NAD(P)H two-photon fluorescence microscopy in vivo: topology and optical inner filters. Biophys J 88:2165–2176

    Article  PubMed  CAS  Google Scholar 

  94. Christie RH, Bacskai BJ, Zipfel WR, Williams RM, Kajdasz ST, Webb WW, Hyman BT (2001) Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy. J Neurosci 21:858–864

    PubMed  CAS  Google Scholar 

  95. Weber G (1950) Fluorescence of riboflavin and flavin-adenine dinucleotide. Biochem J 47: 114–121

    PubMed  CAS  Google Scholar 

  96. Visser AJ (1984) Kinetics of stacking interactions in flavin adenine dinucleotide from time-resolved flavin fluorescence. Photochem Photobiol 40:703–706

    Article  PubMed  CAS  Google Scholar 

  97. de Kok A, Visser AJ (1987) Flavin binding site differences between lipoamide dehydrogenase and glutathione reductase as revealed by static and time-resolved flavin fluorescence. FEBS Lett 218:135–138

    Article  PubMed  Google Scholar 

  98. Digris AV, Shakoun VV, Novikov EG, van Hoek A, Claiborne A, Visser AJWG (1999) Thermal stability of a flavoprotein assessed from associative analysis of polarized time-resolved fluorescence spectroscopy. Eur Biophys J 28:526–531

    Article  PubMed  CAS  Google Scholar 

  99. Brolin SE, Agren A (1977) Assay of flavin nucleotides in pancreatic islets by a differential fluorimetric technique. Biochem J 163:159–162

    PubMed  CAS  Google Scholar 

  100. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  101. O’Connor DV, Phillips D (1984) Time-correlated single-photon counting. Academic Press, London

    Google Scholar 

  102. Becker W (2005) Advanced time-correlated single-photon counting techniques. Springer, New York

    Book  Google Scholar 

  103. Davey AM, Walvick RP, Liu Y, Heikal AA, Sheets ED (2007) Membrane order and molecular dynamics associated with IgE receptor cross-linking in mast cells. Biophys J 92:343–355

    Article  PubMed  CAS  Google Scholar 

  104. Niesner R, Peker B, Schlüsche P, Gericke K-H (2004) Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence. Chemphyschem 5:1141–1149

    Article  PubMed  CAS  Google Scholar 

  105. Bird DK, Yan L, Vrotsos KM, Eliceiri KW, Vaughan EM, Keely PJ, White JG, Ramanujam N (2005) Metabolic mapping of MCF 10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res 65:8766–8773

    Article  PubMed  CAS  Google Scholar 

  106. Yu Q, Proia M, Heikal AA (2008) Integrated biophotonics approach for noninvasive and multiscale studies of biomolecular and cellular biophysics. J Biomed Opt 13:041315

    Article  PubMed  CAS  Google Scholar 

  107. Bailey MF, Thompson EHZ, Millar DP (2001) Probing DNA polymerase fidelity mechanisms using time-resolved fluorescence anisotropy. Methods 25:62–77

    Article  PubMed  CAS  Google Scholar 

  108. Mayevsky A, Rogatsky GG (2007) Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am J Physiol Cell Physiol 292:C615–C640

    Article  PubMed  CAS  Google Scholar 

  109. Mayevsky A, Barbiro-Michaely E (2009) Use of NADH fluorescence to determine mitochondrial function in vivo. Int J Biochem Cell Biol 41:1977–1988

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks his former student, Dr. Qianru Yu, for her help in obtaining some of the data used in this chapter. Figure 3 is a courtesy of Dr. Karl Kasischke (University of Rochester, School of Medicine and Dentistry, Rochester, NY) and published here with permission. This work was partially supported by the National Institute of Health (AG030949) and the National Science Foundation (MCB0718741). The editorial comments by Dr. Shelley Smith (University of Minnesota-Duluth) are deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Heikal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Heikal, A.A. (2012). A Multiparametric Imaging of Cellular Coenzymes for Monitoring Metabolic and Mitochondrial Activities. In: Geddes, C. (eds) Reviews in Fluorescence 2010. Reviews in Fluorescence, vol 2010. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9828-6_10

Download citation

Publish with us

Policies and ethics