Skip to main content

Carbon Nanotube Arrays: Synthesis, Properties, and Applications

  • Chapter
  • First Online:

Abstract

Carbon nanotubes (CNTs) have become one of the most interesting allotropes of carbon since the discovery of multi-walled carbon nanotubes (MWNTs) by Iijima [1] in 1991. It took almost 2 more years until Iijima and Ichihashi [2] and Bethune et al. [3] synthesized simultaneously single-walled carbon nanotubes (SWNTs). Ever since, steady progress has been made to successfully synthesize vertically and horizontally aligned arrays of CNTs over a wide range of substrates by employing different techniques. CNTs have shown promising mechanical, electrical, optical, and thermal properties, rendering their applications in new structural and functional materials, electrical circuitry, energy storage, drug delivery, and many other devices of the future generation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 7 Nov 1991

    Article  CAS  Google Scholar 

  2. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 17 Jun 1993

    Article  CAS  Google Scholar 

  3. D.S. Bethune, C.H. Kiang, M.S. Devries et al., Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430), 605–607 17 Jun 1993

    Article  CAS  Google Scholar 

  4. T. Guo, P. Nikolaev, A.G. Rinzler et al., Self-assembly of tubular fullerenes. J. Phys. Chem. 99(27), 10694–10697 6 Jul 1995

    Article  CAS  Google Scholar 

  5. M. José-Yacamán, M. Mikiyoshida, L. Rendon et al., Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett. 62(2), 202–204 11 Jan 1993

    Article  Google Scholar 

  6. R.L. Vander Wal, T.M. Ticich, V.E. Curtis, Diffusion flame synthesis of single-walled carbon nanotubes. Chem. Phys. Lett. 323(3–4), 217–223 16 Jun 2000

    Google Scholar 

  7. A.T. Matveev, D. Golberg, V.P. Novikov et al., Synthesis of carbon nanotubes below room temperature. Carbon 39(1), 155–158 Jan 2001

    Article  CAS  Google Scholar 

  8. T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358(6383), 220–222 16 Jul 1992

    Article  CAS  Google Scholar 

  9. C. Journet, W.K. Maser, P. Bernier et al., Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644), 756–758 21 Aug 1997

    Article  CAS  Google Scholar 

  10. A. Thess, R. Lee, P. Nikolaev et al., Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 26 Jul 1996

    Article  CAS  Google Scholar 

  11. L.M. Yuan, K. Saito, C.X. Pan et al., Nanotubes from methane flames. Chem. Phys. Lett. 340(3–4), 237–241 1 Jun 2001

    Article  CAS  Google Scholar 

  12. L.M. Yuan, K. Saito, W.C. Hu et al., Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes. Chem. Phys. Lett. 346(1–2), 23–28 28 Sep 2001

    Article  CAS  Google Scholar 

  13. E.F. Kukovitsky, S.G. L’vov, N.A. Sainov et al., Correlation between metal catalyst particle size and carbon nanotube growth. Chem. Phys. Lett. 355(5–6), 497–503 8 Apr 2002

    Article  CAS  Google Scholar 

  14. J. Li, C. Papadopoulos, J.M. Xu et al., Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett. 75(3), 367–369 19 Jul 1999

    Article  CAS  Google Scholar 

  15. A.M. Cassell, J.A. Raymakers, J. Kong et al., Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B. 103(31), 6484–6492 5 Aug 1999

    Article  CAS  Google Scholar 

  16. W.Z. Li, S.S. Xie, L.X. Qian et al., Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701–1703 6 Dec 1996

    Article  CAS  Google Scholar 

  17. J. Kong, H.T. Soh, A.M. Cassell et al., Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705), 878–881 29 Oct 1998

    Article  CAS  Google Scholar 

  18. H. Wang, J. Lin, C.H.A. Huan et al., Controlled synthesis of aligned carbon nanotube arrays on catalyst patterned silicon substrates by plasma-enhanced chemical vapor deposition. Appl. Surf. Sci. 181(3–4), 248–254 21 Sep 2001

    Article  CAS  Google Scholar 

  19. S.S. Fan, W.J. Liang, H.Y. Dang et al., Carbon nanotube arrays on silicon substrates and their possible application. Physica E 8(2), 179–183 Aug 2000

    Article  CAS  Google Scholar 

  20. Z.H. Yuan, H. Huang, H.Y. Dang et al., Field emission property of highly ordered monodispersed carbon nanotube arrays. Appl. Phys. Lett. 78(20), 3127–3129 14 May 2001

    Article  CAS  Google Scholar 

  21. W.C. Hu, D.W. Gong, Z. Chen et al., Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate. Appl. Phys. Lett. 79(19), 3083–3085 5 Nov 2001

    Article  CAS  Google Scholar 

  22. Z.F. Ren, Z.P. Huang, J.W. Xu et al., Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391), 1105–1107 6 Nov 1998

    Article  CAS  Google Scholar 

  23. C. Masarapu, B.Q. Wei, Direct growth of aligned multiwalled carbon nanotubes on treated stainless steel substrates. Langmuir 23(17), 9046–9049 14 Aug 2007

    Article  CAS  Google Scholar 

  24. Z.P. Huang, J.W. Wu, Z.F. Ren et al., Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett. 73(26), 3845–3847 28 Dec 1998

    Article  CAS  Google Scholar 

  25. Y. Gao, J. Liu, M. Shi et al., Dense arrays of well-aligned carbon nanotubes completely filled with single crystalline titanium carbide wires on titanium substrates. Appl. Phys. Lett. 74(24), 3642–3644 14 Jun 1999

    Article  CAS  Google Scholar 

  26. G. Li, S. Chakrabarti, M. Schulz et al., Growth of aligned multiwalled carbon nanotubes on bulk copper substrates by chemical vapor deposition. J. Mater. Res. 24(9), 2813–2820 Sept 2009

    Article  CAS  Google Scholar 

  27. S. Sotiropoulou, N.A. Chaniotakis, Carbon nanotube array-based biosensor Anal. Bioanal. Chem. 375(1), 103–105 Jan 2003

    CAS  Google Scholar 

  28. H. Ago, N. Uehara, K. Ikeda et al., Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized Raman spectroscopy. Chem. Phys. Lett. 421(4–6), 399–403 15 Apr 2006

    Article  CAS  Google Scholar 

  29. V. Derycke, R. Martel, M. Radosvljevic et al., Catalyst-free growth of ordered single-walled carbon nanotube networks. Nano Lett. 2(10), 1043–1046 Oct 2002

    Article  CAS  Google Scholar 

  30. N. Saurakhiya, Y.W. Zhu, F.C. Cheong et al., Pulsed laser deposition-assisted patterning of aligned carbon nanotubes modified by focused laser beam for efficient field emission. Carbon 43(10), 2128–2133 Aug 2005

    Article  CAS  Google Scholar 

  31. J.S. Suh, K.S. Jeong, J.S. Lee et al., Study of the field-screening effect of highly ordered carbon nanotube arrays. Appl. Phys. Lett. 80(13), 2392–2394 1 Apr 2002

    Article  CAS  Google Scholar 

  32. H. Ago, T. Komatsu, S. Ohshima et al., Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl. Phys. Lett. 77(1), 79–81 3 Jul 2000

    Article  CAS  Google Scholar 

  33. B.Q. Wei, R. Vajtai, Y. Jung et al., Organized assembly of carbon nanotubes – cunning refinements help to customize the architecture of nanotube structures. Nature 416(6880), 495–496 4 Apr 2002

    Article  CAS  Google Scholar 

  34. D.S. Xu, G.L. Guo, L.L. Gui et al., Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates. Appl. Phys. Lett. 75(4), 481–483 26 Jul 1999

    Article  CAS  Google Scholar 

  35. Y. Wang, K. Kempa, B. Kimball et al., Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes. Appl. Phys. Lett. 85(13), 2607–2609 27 Sept 2004

    Article  CAS  Google Scholar 

  36. C.V. Nguyen, L. Delzeit, A.M. Cassell et al., Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett. 2(10), 1079–1081 Oct 2002

    Article  CAS  Google Scholar 

  37. K.M. Ryu, A. Badmaev, L. Gomez et al., Synthesis of aligned single-walled nanotubes using catalysts defined by nanosphere lithography. J. Am. Chem. Soc. 129(33), 10104–10105 22 Aug 2007

    Article  CAS  Google Scholar 

  38. Z.W. Pan, S.S. Xie, B.H. Chang et al., Direct growth of aligned open carbon nanotubes by chemical vapor deposition. Chem. Phys. Lett. 299(1), 97–102 1 Jan 1999

    Article  CAS  Google Scholar 

  39. J.F. AuBuchon, C. Daraio, L.H. Chen et al., Iron silicide root formation in carbon nanotubes grown by microwave PECVD. J. Phys. Chem. B. 109(51), 24215–24219 29 Dec 2005

    Article  CAS  Google Scholar 

  40. N. Hayashi, S. Honda, K. Tsuji et al., Highly aligned carbon nanotube arrays fabricated by bias sputtering. Appl. Surf. Sci. 212, 393–396 15 May 2003

    Article  CAS  Google Scholar 

  41. H.F. Zhao, H. Song, Z.M. Li et al., Electrophoretic deposition and field emission properties of patterned carbon nanotubes. Appl. Surf. Sci. 251(1–4), 242–244 15 Sept 2005

    Article  CAS  Google Scholar 

  42. N.S. Lee, D.S. Chung, I.T. Han et al., Application of carbon nanotubes to field emission displays. Diamond Relat. Mater. 10(2), 265–270 Feb 2001

    Article  CAS  Google Scholar 

  43. Y.M. Shin, S.Y. Jeong, H.J. Jeong et al., Influence of morphology of catalyst thin film on vertically aligned carbon nanotube growth. J. Crystal Growth 271(1–2), 81–89 15 Oct 2004

    Article  CAS  Google Scholar 

  44. R.M. Liu, J.M. Ting, J.C.A. Huang et al., Growth of carbon nanotubes and nanowires using selected catalysts. Thin Solid Films 420, 145–150 2 Dec 2002

    Article  Google Scholar 

  45. K. Kempa, B. Kimball, J. Rybczynski et al., Photonic crystals based on periodic arrays of aligned carbon nanotubes. Nano Lett. 3(1), 13–18 Jan 2003

    Article  CAS  Google Scholar 

  46. Z.P. Huang, D.L. Carnahan, J. Rybczynski et al., Growth of large periodic arrays of carbon nanotubes. Appl. Phys. Lett. 82(3), 460–462 20 Jan 2003

    Article  CAS  Google Scholar 

  47. E. Joselevich, C.M. Lieber, Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett. 2(10), 1137–1141 Oct 2002

    Article  CAS  Google Scholar 

  48. Y.G. Zhang, A.L. Chang, J. Cao et al., Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79(19), 3155–3157 5 Nov 2001

    Article  CAS  Google Scholar 

  49. K.H. Lee, J.M. Cho, W. Sigmund, Control of growth orientation for carbon nanotubes. Appl. Phys. Lett. 82(3), 448–450 20 Jan 2003

    Article  CAS  Google Scholar 

  50. N. Kumar, W. Curtis, J.I. Hahm, Laterally aligned, multiwalled carbon nanotube growth using Magnetospirillum magnetotacticum. Appl. Phys. Lett. 86(17), 173101 1–3 25 Apr 2005

    Google Scholar 

  51. S.M. Huang, X.Y. Cai, J. Liu, Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 125(19), 5636–5637 14 May 2003

    Article  CAS  Google Scholar 

  52. S.M. Huang, B. Maynor, X.Y. Cai et al., Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces. Adv. Mater. 15(19), 1651–1655 2 Oct 2003

    Article  CAS  Google Scholar 

  53. S.M. Huang, Q. Fu, L. An et al., Growth of aligned SWNT arrays from water-soluble molecular clusters for nanotube device fabrication. Phys. Chem. Chem. Phys. 6(6), 1077–1079 21 Mar 2004

    Article  CAS  Google Scholar 

  54. D. Sanchez-Portal, E. Artacho, J.M. Soler et al., Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B. 59(19), 12678–12688 15 May 1999

    Article  CAS  Google Scholar 

  55. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678–680 20 Jun 1996

    Article  CAS  Google Scholar 

  56. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 26 Sep 1997

    Article  CAS  Google Scholar 

  57. G.H. Gao, T. Cagin, W.A. Goddard, Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9(3), 184–191 Sept 1998

    Article  CAS  Google Scholar 

  58. E. Hernandez, C. Goze, P. Bernier et al., Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80(20), 4502–4505 18 May 1998

    Article  CAS  Google Scholar 

  59. M.F. Yu, B.S. Files, S. Arepalli et al., Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 12 Jun 2000

    Article  CAS  Google Scholar 

  60. H.W. Zhu, C.L. Xu, D.H. Wu et al., Direct synthesis of long single-walled carbon nanotube strands. Science 296(5569), 884–886 3 May 2002

    Article  CAS  Google Scholar 

  61. L.T. Qu, L.M. Dai, M. Stone et al., Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322(5899), 238–242 10 Oct 2008

    Article  CAS  Google Scholar 

  62. J. Hone, B. Batlogg, Z. Benes et al., Quantized phonon spectrum of single-wall carbon nanotubes. Science 289(5485), 1730–1733 8 Sept 2000

    Article  CAS  Google Scholar 

  63. W. Yi, L. Lu, D.L. Zhang et al., Linear specific heat of carbon nanotubes. Phys. Rev. B. 59(14), R9015–R9018 1 Apr 1999

    Article  CAS  Google Scholar 

  64. J.C. Lasjaunias, K. Biljakovic, Z. Benes et al., Low-temperature specific heat of single-wall carbon nanotubes. Phys. Rev. B 65(11), 113409 1–4 15 Mar 2002

    Google Scholar 

  65. V.N. Popov, Low-temperature specific heat of nanotube systems. Phys. Rev. B. 66(15), 153408 15 Oct 2002

    Article  CAS  Google Scholar 

  66. P. Kim, L. Shi, A. Majumdar et al., Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 8721(21), 225502 19 Nov 2001

    Google Scholar 

  67. S. Berber, Y.K. Kwon, D. Tomanek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613–4616 15 May 2000

    Article  CAS  Google Scholar 

  68. S. Shaikh, L. Li, K. Lafdi et al., Thermal conductivity of an aligned carbon nanotube array. Carbon 45(13), 2608–2613 Nov 2007

    Article  CAS  Google Scholar 

  69. H. Huang, C.H. Liu, Y. Wu et al., Aligned carbon nanotube composite films for thermal management. Adv. Mater. 17(13), 1652–1656 4 Jul 2005

    Article  CAS  Google Scholar 

  70. Y. Xu, Y. Zhang, E. Suhir et al., Thermal properties of carbon nanotube array used for integrated circuit cooling. J. Appl. Phys. 100(12), 074302 15 Dec 2006

    Article  CAS  Google Scholar 

  71. L. Langer, L. Stockman, J.P. Heremans et al., Electrical-resistance of a carbon nanotube bundle. J. Mater. Res. 9(4), 927–932 Apr 1994

    Article  CAS  Google Scholar 

  72. L. Langer, V. Bayot, E. Grivei et al., Quantum transport in a multiwalled carbon nanotube. Phys. Rev. Lett. 76(3), 479–482 15 Jan 1996

    Article  CAS  Google Scholar 

  73. M. Bockrath, D.H. Cobden, P.L. McEuen et al., Single-electron transport in ropes of carbon nanotubes. Science 275(5308), 1922–1925 28 Mar 1997

    Article  CAS  Google Scholar 

  74. J.W. Mintmire, B.I. Dunlap, C.T. White, Are fullerene tubules metallic. Phys. Rev. Lett. 68(5), 631–634 3 Feb 1992

    Article  CAS  Google Scholar 

  75. S.J. Tans, M.H. Devoret, H.J. Dai et al., Individual single-wall carbon nanotubes as quantum wires. Nature 386(6624), 474–477 3 Apr 1997

    Article  CAS  Google Scholar 

  76. L.B. Zhu, J.W. Xu, Y.H. Xiu et al., Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays. Carbon 44(2), 253–258 Feb 2006

    Article  CAS  Google Scholar 

  77. W.A. de Heer, A. Chatelain, D. Ugarte, A carbon nanotube field-emission electron source. Science 270(5239), 1179–1180 17 Nov 1995

    Article  Google Scholar 

  78. W.A. de Heer, W.S. Bacsa, A. Chatelain et al., Aligned carbon nanotube films – Production and optical and electronic-properties. Science 268(5212), 845–847 12 May 1995

    Article  CAS  Google Scholar 

  79. S.S. Fan, M.G. Chapline, N.R. Franklin et al., Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 22 Jan 1999

    Article  CAS  Google Scholar 

  80. Y.N. Zhang, W. Lei, X.B. Zhang et al., Calculation of the emission performance of the carbon nanotube array. Appl. Surf. Sci. 245(1–4), 400–406 30 May 2005

    CAS  Google Scholar 

  81. K.S. Hazra, P. Rai, D.R. Mohapatra et al., Dramatic enhancement of the emission current density from carbon nanotube based nanosize tips with extremely low onset fields. ACS Nano 3(9), 2617–2622 Sept 2009

    Article  CAS  Google Scholar 

  82. B. Zhao, D.N. Futaba, S. Yasuda et al., Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. ACS Nano 3(1), 108–114 Jan 2009

    Article  CAS  Google Scholar 

  83. L. Nilsson, O. Groening, C. Emmenegger et al., Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 76(15), 2071–2073 10 Apr 2000

    Article  CAS  Google Scholar 

  84. J.C. Charlier, M. Terrones, M. Baxendale et al., Enhanced electron field emission in B-doped carbon nanotubes. Nano Lett. 2(11), 1191–1195 Nov 2002

    Article  CAS  Google Scholar 

  85. A.C. Dillon, K.M. Jones, T.A. Bekkedahl et al., Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623), 377–379 27 Mar 1997

    Article  CAS  Google Scholar 

  86. C. Liu, Y.Y. Fan, M. Liu et al., Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442), 1127–1129 5 Nov 1999

    Article  CAS  Google Scholar 

  87. Y. Ye, C.C. Ahn, C. Witham et al., Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74(16), 2307–2309 19 Apr 1999

    Article  CAS  Google Scholar 

  88. H.W. Zhu, A.Y. Cao, X.S. Li et al., Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature. Appl. Surf. Sci. 178(1–4), 50–55 2 Jul 2001

    Article  CAS  Google Scholar 

  89. Q.Y. Wang, J.K. Johnson, Optimization of carbon nanotube arrays for hydrogen adsorption. J. Phys. Chem. B 103(23), 4809–4813 Jun 10 1999

    Article  CAS  Google Scholar 

  90. A. Misra, J. Giri, C. Daraio, Hydrogen evolution on hydrophobic aligned carbon nanotube arrays. ACS Nano 3(12), 3903–3908 Dec 2009

    Article  CAS  Google Scholar 

  91. J. Kong, N.R. Franklin, C.W. Zhou et al., Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 28 Jan 2000

    Article  CAS  Google Scholar 

  92. P.F. Qi, O. Vermesh, M. Grecu et al., Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett. 3(3), 347–351 Mar 2003

    Article  CAS  Google Scholar 

  93. J.C. Claussen, A.D. Franklin, A. ul Haque et al., Electrochemical biosensor of nanocube-augmented carbon nanotube networks. ACS Nano 3(1), 37–44 Jan 2009

    Article  CAS  Google Scholar 

  94. H. Cai, X.N. Cao, Y. Jiang et al., Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal. Bioanal. Chem. 375(2), 287–293 Jan 2003

    CAS  Google Scholar 

  95. R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis et al., Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 100(9), 4984–4989 29 Apr 2003

    Article  CAS  Google Scholar 

  96. J. Zhao, A. Buldum, J. Han et al., First-principles study of Li-intercalated carbon nanotube ropes. Phys. Rev. Lett. 85(8), 1706–1709 21 Aug 2000

    Article  CAS  Google Scholar 

  97. G.L. Che, B.B. Lakshmi, E.R. Fisher et al., Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393(6683), 346–349 28 May 1998

    Article  CAS  Google Scholar 

  98. M. Endo, Y.A. Kim, T. Hayashi et al., Vapor-grown carbon fibers (VGCFs) – basic properties and their battery applications. Carbon 39(9), 1287–1297 Aug 2001

    Article  CAS  Google Scholar 

  99. G.T. Wu, C.S. Wang, X.B. Zhang et al., Lithium insertion into CuO/carbon nanotubes. J. Power Sources 75(1), 175–179 1 Sept 1998

    Article  CAS  Google Scholar 

  100. B. Gao, A. Kleinhammes, X.P. Tang et al., Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem. Phys. Lett. 307(3–4), 153–157 2 Jul 1999

    Article  CAS  Google Scholar 

  101. R.Z. Ma, J. Liang, B.Q. Wei et al., Study of electrochemical capacitors utilizing carbon nanotube electrodes. J. Power Sources 84(1), 126–129 Nov 1999

    Article  CAS  Google Scholar 

  102. K.H. An, W.S. Kim, Y.S. Park et al., Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11(5), 387–392 Oct 2001

    Article  CAS  Google Scholar 

  103. C.M. Niu, E.K. Sichel, R. Hoch et al., High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70(11), 1480–1482 17 Mar 1997

    Article  CAS  Google Scholar 

  104. H. Ago, K. Petritsch, M.S.P. Shaffer et al., Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv. Mater. 11(15), 1281 20 Oct 1999

    Article  CAS  Google Scholar 

  105. J. van de Lagemaat, T.M. Barnes, G. Rumbles et al., Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode. Appl. Phys. Lett. 88(23), 233503 1–3 5 Jun 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC outside the People's Republic of China, Weilie Zhou and Zhong Lin Wang in the People's Republic of China

About this chapter

Cite this chapter

Neupane, S., Li, W. (2011). Carbon Nanotube Arrays: Synthesis, Properties, and Applications. In: Zhou, W., Wang, Z. (eds) Three-Dimensional Nanoarchitectures. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9822-4_10

Download citation

Publish with us

Policies and ethics