Skip to main content

Nonlocal Microdamage Constitutive Model for High Energy Impacts

  • Conference paper
  • First Online:
  • 1668 Accesses

Abstract

During highly dynamic and ballistic loading processes, large inelastic deformation associated with high strain rates leads, for a broad class of heterogeneous materials, to degradation and failure by localized damage and fracture. However, as soon as material failure dominates a deformation process, the material increasingly displays strain softening and the finite element predictions of ballistic response are considerably affected by the mesh size. This gives rise to non-physical description of the ballistic behavior and mesh-dependent ballistic limit velocities that may mislead the design of ballistic-resistant materials. This study is concerned with the development and numerical implementation of a novel coupled thermo-hypoelasto-viscoplastic and thermoviscodamage constitutive model within the laws of thermodynamics in which an intrinsic material length scale parameter is incorporated through the nonlocal gradient-dependent damage approach. It is shown through simulating plugging failure in ballistic penetration of high-strength steel targets by blunt projectiles that the length scale parameter plays the role of a localization limiter allowing one to obtain meaningful values for the ballistic limit velocity independent of the finite element mesh density. Therefore, the proposed nonlocal damage model leads to an improvement in the modeling and numerical simulation of high velocity impact related problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu Al-Rub, R.K., Voyiadjis, G.Z. “A Finite Strain Plastic-Damage Model for High Velocity Impacts using Combined Viscosity and Gradient Localization Limiters,: Part I-Theoretical Formulation,” International Journal of Damage Mechanics, 15(4), 293–334, 2006.

    Article  Google Scholar 

  2. Voyiadjis, G.Z., Abu Al-Rub, R.K. “A Finite Strain Plastic-Damage Model for High Velocity Impacts using Combined Viscosity and Gradient Localization Limiters, Part II: Numerical Aspects and Simulations,” International Journal of Damage Mechanics, 15(4), 335–373, 2006.

    Google Scholar 

  3. Voyiadjis, G.Z., Abu Al-Rub, R.K., and Palazotto, A.N. “Constitutive Modeling and Simulation of Perforation of Steel Plates by Blunt Projectile,” AIAA Journal, 46(2), 304–316, 2008.

    Article  Google Scholar 

  4. Abu Al-Rub, R.K., Kim, S.-M. “Predicting Mesh-Independent Ballistic Limits for Heterogeneous Targets by a Nonlocal Damage Computational Framework,” Composites: Part B, 40(6), 495–510, 2009.

    Article  Google Scholar 

  5. Abu Al-Rub, R.K. and Voyiadjis, G.Z. “Analytical and Experimental Determination of the Material Intrinsic Length Scale of Strain Gradient Plasticity Theory from Micro- and Nano-Indentation Experiments,” International Journal of Plasticity, 20(6), 1139–1182, 2004.

    Google Scholar 

  6. Abu Al-Rub, R.K., and Voyiadjis, G.Z. “Determination of the Material Intrinsic Length Scale of Gradient Plasticity Theory,” International Journal of Multiscale Computational Engineering, 2, 377–400, 2004.

    Article  Google Scholar 

  7. Voyiadjis, G.Z., Abu Al-Rub, R.K. “Gradient Plasticity Theory with a Variable Length Scale Parameter,” International Journal of Solids and Structures, 42, 3998–4029, 2005.

    Google Scholar 

  8. Børvik, T., Langseth, M., Hopperstad, O.S., Malo, K.A. "Effect of Target Thickness in Blunt Projectile Penetration of Weldox 460E Steel Plates." Int. J. Impact Eng., 28, 413–464, 2003.

    Article  Google Scholar 

  9. ABAQUS. User Manual, Version 6.5, Hibbit, Karlsson and Sorensen, Inc, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid K. Abu Al-Rub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Al-Rub, R.K.A., Palazotto, A.N. (2011). Nonlocal Microdamage Constitutive Model for High Energy Impacts. In: Proulx, T. (eds) Time Dependent Constitutive Behavior and Fracture/Failure Processes, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9794-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9794-4_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9498-1

  • Online ISBN: 978-1-4419-9794-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics