Skip to main content

Angiographic Image Analysis

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

In the last 20 years, progress in 3D medical imaging (such as MRI and CT) has led to the development of modalities devoted to visualise vascular structures. These angiographic images progressively proved their usefulness in the context of various clinical applications. However, such data are generally complex to analyse due to their size and low amount of relevant (vascular) information versus noise, artifacts and other anatomical structures. Therefore, there is an ongoing necessity to provide tools facilitating image visualisation and analysis. In this chapter, we first focus on vascular image analysis. In particular, we present a survey on both standard and recent vessel segmentation methodologies. We then discuss the existing ways to model anatomical knowledge via the computation of vascular atlases. Such atlases can notably be embedded in computer-aided radiology tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Part I of this survey [93] also describes MRA acquisition techniques.

  2. 2.

    Due to limited space we heave omitted those methods which have resulted led to fewer publications, such as neural network-based methods [52].

  3. 3.

    Note that, by duality, region-growing also provides solutions to segmenting vessels by skeletonization. In such a case, the growing process starts from a seed being a subset of the background (which can then be automatically defined), and generally includes topological constraints in the propagation criterion [27, 76].

  4. 4.

    From a structural (and more especially from a topological) point of view, the terminology of “tree” is generally incorrect for most of vascular networks, despite its frequent use in the literature devoted to angiographic imaging. In the sequel of the chapter we will generally distinguish vascular trees from vascular networks. This distinction will be clarified in the next sections.

  5. 5.

    The notion of “vascular areas”, which actually does not match the anatomical notion of vascular territories, was introduced in [78] in order to propose a partition of the cerebral volume to facilitate the segmentation of vessels from PC-MRA data.

  6. 6.

    The notion of an atlas has been the subject of a quite intensive research activity during the last 15 years, especially in the field of brain imaging. The emergence of computational anatomy [39, 50, 99] is, in particular, a direct expression of such research activities.

  7. 7.

    The reader interested in registration – which is an issue strongly linked to (vascular) atlas generation – may complete the study of this chapter by reading the following surveys [48, 116].

  8. 8.

    However, this fact does not represent a crippling drawback, since the relevance of interindividual variability handling is essentially modulated by the applications requiring the designed atlas. In particular, deterministic atlases must not be considered as less (or more) relevant than statistical ones.

  9. 9.

    Note that the information on coronary arteries gathered in [26] corresponds to a sample of patients with “normal-sized hearts”. This example illustrates the general necessity to constraint some anatomical hypotheses if we hope to finally obtain a useful model from a finite (and generally restricted) set of patients. Such a consideration remains valid when considering statistical models: a classical example is the restriction to either healthy or non-healthy people in the considered pool of patients.

  10. 10.

    See, e.g., [22] for a robust medial axis computation method.

References

  1. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)

    Article  Google Scholar 

  2. Agam, G., Armato, S. III, Wu, C.: Vessel tree reconstruction in thoracic CT scans with application to nodule detection. IEEE Trans. Med. Imaging 24(4), 486–499 (2005)

    Article  Google Scholar 

  3. Antiga, L., Steinman, D.A.: Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans. Med. Imaging 23(6), 704–713 (2004)

    Article  Google Scholar 

  4. Avants, B.B., Williams, J.P.: An adaptive minimal path generation technique for vessel tracking in CTA/CE-MRA volume images. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000. Lecture Notes in Computer Science, vol. 1935, pp. 707–716. Springer, Berlin (2000)

    Google Scholar 

  5. Aylward, S.R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21(2), 61–75 (2002)

    Article  Google Scholar 

  6. Aylward, S.R., Jomier, J., Weeks, S., Bullitt, E.: Registration and analysis of vascular images. Int. J. Comput. Vis. 55(2–3), 123–138 (2003)

    Article  Google Scholar 

  7. Benmansour, F., Cohen, L.D.: A new interactive method for coronary arteries segmentation based on tubular anisotropy. In: International Symposium on Biomedical Imaging – ISBI 2009, pp. 41–44. IEEE (2009)

    Google Scholar 

  8. Bigun, J., Bigun, T., Nilsson, K.: Recognition by symmetry derivatives and the generalized structure tensor. IEEE Trans. Pattern Anal. Mach. Intell. 26(12), 1590–1605 (2004)

    Article  Google Scholar 

  9. Boldak, C., Rolland, Y., Toumoulin, C.: An improved model-based vessel tracking algorithm with application to computed tomography angiography. Biocybern. Biomed. Eng. 23(1), 41–64 (2003)

    Google Scholar 

  10. Bouraoui, B., Ronse, C., Baruthio, J., Passat, N., Germain, P.: 3D segmentation of coronary arteries based on advanced Mathematical Morphology techniques. Comput. Med. Imaging Graph. 34(5), 377–387 (2010)

    Article  Google Scholar 

  11. Caldairou, C., Passat, N., Naegel, B.: Attribute-filtering and knowledge extraction for vessel segmentation. In: International Symposium on Visual Computing – ISVC 2010, Lecture Notes in Computer Science, vol. 6453, pp. 13–22. Springer, Berlin (2010)

    Google Scholar 

  12. Carrillo, J.F., Hernández Hoyos, M., Davila-Serrano, E.E., Orkisz, M.: Recursive tracking of vascular tree axes in 3D medical images. Int. J. Comput. Assist. Radiol. Surg. 1(6), 331–339 (2007)

    Article  Google Scholar 

  13. Carrillo, J.F., Orkisz, M., Hernández Hoyos, M.: Extraction of 3D vascular tree skeletons based on the analysis of connected components evolution. In: Computer Analysis of Images and Patterns – CAIP 2005, Lecture Notes in Computer Science, vol. 3691, pp. 604–611. Springer, Berlin (2005)

    Google Scholar 

  14. Chalopin, C., Finet, G., Magnin, I.E.: Modeling the 3D coronary tree for labeling purposes. Med. Image Anal. 5(4), 301–315 (2001)

    Article  Google Scholar 

  15. Chen, J., Amini, A.A.: Quantifying 3-D vascular structures in MRA images using hybrid PDE and geometric deformable models. IEEE Trans. Med. Imaging 23(10), 1251–1262 (2004)

    Article  Google Scholar 

  16. Chillet, D., Jomier, J., Cool, D., Aylward, S.: Vascular atlas formation using a vessel-to-image affine registration method. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2003. Lecture Notes in Computer Science, vol. 2878, pp. 335–342. Springer, Berlin (2003)

    Google Scholar 

  17. Chung, A.C.S., Noble, J.A., Summers, P.: Fusing speed and phase information for vascular segmentation of phase contrast MR angiograms. Med. Image Anal. 6(2), 109–128 (2002)

    Article  Google Scholar 

  18. Chung, A.C.S., Noble, J.A., Summers, P.E.: Vascular segmentation of phase contrast magnetic resonance angiograms based on statistical mixture modeling and local phase coherence. IEEE Trans. Med. Imaging 23(12), 1490–1507 (2004)

    Article  Google Scholar 

  19. Chung, A.C.S., Noble, J.A., Summers, P.E., Brady, M.: 3D vascular segmentation using MRA statistics and velocity field information in PC-MRA. In: Information Processing in Medical Imaging – IPMI 2001. Lecture Notes in Computer Science, vol. 2082, pp. 461–467. Springer, Berlin (2001)

    Google Scholar 

  20. Cool, D., Chillet, D., Guyon, J.P., Foskey, M., Aylward, S.: Tissue-based affine registration of brain images to form a vascular density atlas. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2003. Lecture Notes in Computer Science, vol. 2879, pp. 9–15. Springer, Berlin (2003)

    Google Scholar 

  21. Couinaud, C.: Le foie, études anatomiques et chirurgicales. Masson, Paris (1957)

    Google Scholar 

  22. Couprie, M., Coeurjolly, D., Zrour, R.: Discrete bisector function and Euclidean skeleton in 2D and 3D. Image Vis. Comput. 25(10), 1519–1698 (2007)

    Article  Google Scholar 

  23. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) 39(1), 1–38 (1977)

    Google Scholar 

  24. Descoteaux, M., Collins, D.L., Siddiqi, K.: A geometric flow for segmenting vasculature in proton-density weighted MRI. Med. Image Anal. 12(4), 497–513 (2008)

    Article  Google Scholar 

  25. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dodge, J.T. Jr., Brown, B.G., Bolson, E.L., Dodge, H.T.: Intrathoracic spatial location of specified coronary segments on the normal human heart. Circulation 78(5), 1167–1180 (1988)

    Article  Google Scholar 

  27. Dokládal, P., Lohou, C., Perroton, L., Bertrand, G.: Liver blood vessels extraction by a 3-D topological approach. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 1999. Lecture Notes in Computer Science, vol. 1679, pp. 98–105. Springer, Berlin (1999)

    Google Scholar 

  28. El-Baz, A., Farag, A.A., Gimel’farb, G.L., El-Ghar, M.A., Eldiasty, T.: A new adaptive probabilistic model of blood vessels for segmenting MRA images. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006. Lecture Notes in Computer Science, vol. 4191, pp. 799–806. Springer, Berlin (2006)

    Google Scholar 

  29. El-Baz, A., Farag, A.A., Gimel’farb, G.L., Hushek, S.G.: Automatic cerebrovascular segmentation by accurate probabilistic modeling of TOF-MRA images. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005. Lecture Notes in Computer Science, vol. 3749, pp. 34–42. Springer, Berlin (2005)

    Google Scholar 

  30. Ezquerra, N., Capell, S., Klein, L., Duijves, P.: Model-guided labeling of coronary structure. IEEE Trans. Med. Imaging 17(3), 429–441 (1998)

    Article  Google Scholar 

  31. Flasque, N., Desvignes, M., Constans, J.M., Revenu, M.: Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Med. Image Anal. 5(3), 173–183 (2001)

    Article  Google Scholar 

  32. Florin, C., Paragios, N., Williams, J.: Particle filters, a quasi-Monte-Carlo-solution for segmentation of coronaries. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005. Lecture Notes in Computer Science, vol. 3749, pp. 246–253. Springer, Berlin (2005)

    Google Scholar 

  33. Frangi, A.F., Niessen, W.J., Hoogeveen, R.M., van Walsum, T., Viergever, M.A.: Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans. Med. Imaging 18(10), 946–956 (1999)

    Article  Google Scholar 

  34. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 1998. Lecture Notes in Computer Science, vol. 1496, pp. 130–137. Springer, Berlin (1998)

    Google Scholar 

  35. Friman, O., Hindennach, M., Kühnel, C., Peitgen, H.O.: Multiple hypothesis template tracking of small 3D vessel structures. Med. Image Anal. 14(2), 160–171 (2009)

    Article  Google Scholar 

  36. Garreau, M., Coatrieux, J.L., Collorec, R., Chardenon, C.: A knowledge-based approach for 3-D reconstruction and labeling of vascular networks from biplane angiographic projections. IEEE Trans. Med. Imaging 10(2), 122–131 (1991)

    Article  Google Scholar 

  37. Gerig, G., Koller, T., Székely, G., Brechbühler, C., Kübler, O.: Symbolic description of 3-D structures applied to cerebral vessel tree obtained from MR angiography volume data. In: Information Processing in Medical Imaging – IPMI 1993. Lecture Notes in Computer Science, vol. 687, pp. 94–111. Springer, Berlin (1993)

    Google Scholar 

  38. Graffigne, C., Heitz, F., Pérez, P., Prêteux, F., Sigelle, M., Zerubia, J.: Hierarchical Markov random field models applied to image analysis: A review. In: Neural Morphological and Stochastic Methods in Image and Signal Processing, 1995, SPIE Proceedings, vol. 2568, pp. 2–17. SPIE (1995)

    Google Scholar 

  39. Guimond, A., Meunier, J., Thirion, J.P.: Average brain models: A convergence study. Comput. Vis. Image Underst. 77(2), 192–210 (2000)

    Article  Google Scholar 

  40. Hall, P.: On the addition and comparison of graphs labeled with stochastic variables: Learnable anatomical catalogs. J. Comb. Optim. 5(1), 43–58 (2004)

    Article  Google Scholar 

  41. Hall, P., Ngan, M., Andreae, P.: Reconstruction of vascular networks using three-dimensional models. IEEE Trans. Med. Imaging 16(6), 919–930 (1997)

    Article  Google Scholar 

  42. Haris, K., Efstratiadis, S.N., Maglaveras, M., Papas, C., Gourassas, J., Louridas, G.: Model-based morphological segmentation and labeling of coronary angiograms. IEEE Trans. Med. Imaging 18(10), 1003–1015 (1999)

    Article  Google Scholar 

  43. Heijmans, H., Buckley, M., Talbot, H.: Path openings and closings. J. Math. Imaging Vis. 22, 107–119 (2005)

    Article  MathSciNet  Google Scholar 

  44. Hendriks, C.L.L.: Constrained and dimensionality-independent path openings. IEEE Trans. Image Process. 19(6), 1587–1595 (2010)

    Article  MathSciNet  Google Scholar 

  45. Hernandez, M., Frangi, A.F.: Non-parametric geodesic active regions: Method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA. Med. Image Anal. 11(3), 224–241 (2007)

    Article  Google Scholar 

  46. Hernandez, M., Frangi, A.F., Sapiro, G.: Three-dimensional segmentation of brain aneurysms in CTA using non-parametric region-based information and implicit deformable models: Method and evaluation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2003. Lecture Notes in Computer Science, vol. 2879, pp. 594–602. Springer, Berlin (2003)

    Google Scholar 

  47. Hernandez Hoyos, M., Orłowski, P., Piatkowska-Janko, E., Bogorodzki, P., Orkisz, M.: Vascular centerline extraction in 3D MR angiograms for phase contrast MRI blood flow measurement. Int. J. Comput. Assist. Radiol. Surg. 1(1), 51–61 (2006)

    Article  Google Scholar 

  48. Holden, M.: A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imaging 27(1), 111–128 (2008)

    Article  Google Scholar 

  49. Jomier, J., Aylward, S.R.: Rigid and deformable vasculature-to-image registration: A hierarchical approach. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. Lecture Notes in Computer Science, vol. 3216, pp. 829–836. Springer, Berlin (2004)

    Google Scholar 

  50. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23(Supplement 1), S151–S160 (2004)

    Google Scholar 

  51. Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2), 81–121 (2004)

    Article  Google Scholar 

  52. Kobashi, S., Kamiura, N., Hata, Y., Miyawaki, F.: Volume-quantization-based neural network approach to 3D MR angiography image segmentation. Image Vis. Comput. 19(4), 185–193 (2001)

    Article  Google Scholar 

  53. Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 80(2), 130–171 (2000)

    Article  MATH  Google Scholar 

  54. Law, M.W.K. sand Chung, A.C.S.: Weighted local variance-based edge detection and its application to vascular segmentation in magnetic resonance angiography. IEEE Trans. Med. Imaging 26(9), 1224–1241 (2007)

    Google Scholar 

  55. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: Design and study of flux-based features for 3D vascular tracking. In: International Symposium on Biomedical Imaging – ISBI 2009, pp. 286–289. IEEE (2009)

    Google Scholar 

  56. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)

    Article  Google Scholar 

  57. Li, H., Yezzi, A.J.: Vessels as 4-D curves: Global minimal 4-D paths to extract 3-D tubular surfaces and centerlines. IEEE Trans. Med. Imaging 26(9), 1213–1223 (2007)

    Article  Google Scholar 

  58. Lorenz, C., von Berg, J.: A comprehensive shape model of the heart. Med. Image Anal. 10(4), 657–670 (2006)

    Article  Google Scholar 

  59. Lorigo, L.M., Faugeras, O.D., Grimson, W.E.L., Keriven, R., Kikinis, R., Nabavi, A., Westin, C.F.: CURVES: Curve evolution for vessel segmentation. Med. Image Anal. 5(3), 195–206 (2001)

    Article  Google Scholar 

  60. Mahadevan, V., Narasimha-Iyer, H., Roysam, B., Tanenbaum, H.L.: Robust model-based vasculature detection in noisy biomedical images. IEEE Trans. Inform. Technol. Biomed. 8(3), 360–376 (2004)

    Article  Google Scholar 

  61. Manniesing, R., Niessen, W.J.: Local speed functions in level set based vessel segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. Lecture Notes in Computer Science, vol. 3216, pp. 475–482. Springer, Berlin (2004)

    Google Scholar 

  62. Manniesing, R., Velthuis, B.K., van Leeuwen, M.S., van der Schaaf, I.C., van Laar, P.J., Niessen, W.J.: Level set based cerebral vasculature segmentation and diameter quantification in CT angiography. Med. Image Anal. 10(2), 200–214 (2006)

    Article  Google Scholar 

  63. Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel axis tracking using topology constrained surface evolution. IEEE Trans. Med. Imaging 26(3), 309–316 (2007)

    Article  Google Scholar 

  64. McInerney, T., Terzopoulos, D.: Medical image segmentation using topologically adaptable surfaces. In: Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery - CVRMed-MRCAS 1997. Lecture Notes in Computer Science, vol. 1205, pp. 23–32. Springer, Berlin (1997)

    Google Scholar 

  65. Meijster, A., Wilkinson, H.: A comparison of algorithms for connected set openings and closings. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 484–494 (2002)

    Article  Google Scholar 

  66. Metz, C., Schaap, M., van der Giessen, A., van Walsum, T., Niessen, W.: Semi-automatic coronary artery centerline extraction in computed tomography angiography data. In: International Symposium on Biomedical Imaging – ISBI 2007, pp. 856–859. IEEE (2007)

    Google Scholar 

  67. Metz, C., Schaap, M., van Walsum, T., van der Giessen, A., Weustink, A., Mollet, N., Krestin, G., Niessen, W.: Editorial: 3D segmentation in the clinic: A grand challenge II- Coronary artery tracking. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008 – Workshop: Grand Challenge Coronary Artery Tracking (2008). http://hdl.handle.net/10380/1399

  68. Naegel, B., Passat, N., Ronse, C.: Grey-level hit-or-miss transforms – Part II: Application to angiographic image processing. Pattern Recognit. 40(2), 648–658 (2007)

    Article  MATH  Google Scholar 

  69. Naegel, B., Ronse, C., Soler, L.: Using grey-scale hit-or-miss transform for segmenting the portal network of the liver. In: International Symposium on Mathematical Morphology – ISMM 2005. Computational Imaging and Vision, vol. 30, pp. 429–440. Springer SBM (2005)

    Google Scholar 

  70. Naidich, T.P., Brightbill, T.C.: Vascular territories and watersheds: A zonal frequency analysis of the gyral and sulcal extent of cerebral infarcts. Part I: the anatomic template. Neuroradiology 45(8), 536–540 (2003)

    Google Scholar 

  71. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Process. 15(11), 3531–3539 (2006)

    Article  Google Scholar 

  72. Najman, L., Talbot, H. (eds.): Mathematical Morphology: From Theory to Applications. Wiley, London (2010)

    MATH  Google Scholar 

  73. Nowinski, W., Thirunavuukarasuu, A., Volkau, I., Marchenko, Y., Aminah, B., Puspitasari, F., Runge, V.: A three-dimensional interactive atlas cerebral arterial variants. NeuroInformatics 7(4), 255–264 (2009)

    Article  Google Scholar 

  74. Nowinski, W., Volkau, I., Marchenko, Y., Thirunavuukarasuu, A., Ng, T., Runge, V.: A 3D model of human cerebrovasculature derived from 3T magnetic resonance angiography. NeuroInformatics 7(1), 23–36 (2009)

    Article  Google Scholar 

  75. Olabarriaga, S.D., Breeuwer, M., Niessen, W.J.: Minimum cost path algorithm for coronary artery central axis tracking in CT images. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2003. Lecture Notes in Computer Science, vol. 2879, pp. 687–694. Springer, Berlin (2003)

    Google Scholar 

  76. Passat, N., Ronse, C., Baruthio, J., Armspach, J.P., Bosc, M., Foucher, J.: Using multimodal MR data for segmentation and topology recovery of the cerebral superficial venous tree. In: International Symposium on Visual Computing – ISVC 2005. Lecture Notes in Computer Science, vol. 3804, pp. 60–67. Springer, Berlin (2005)

    Google Scholar 

  77. Passat, N., Ronse, C., Baruthio, J., Armspach, J.P., Maillot, C.: Magnetic resonance angiography: From anatomical knowledge modeling to vessel segmentation. Med. Image Anal. 10(2), 259–274 (2006)

    Article  Google Scholar 

  78. Passat, N., Ronse, C., Baruthio, J., Armspach, J.P., Maillot, C., Jahn, C.: Region-growing segmentation of brain vessels: An atlas-based automatic approach. J. Magn. Reson. Imaging 21(6), 715–725 (2005)

    Article  Google Scholar 

  79. Qian, X., Brennan, M.P., Dione, D.P., Dobrucki, W.L., Jackowski, M.P., Breuer, C.K., Sinusas, A.J., Papademetris, X.: A non-parametric vessel detection method for complex vascular structures. Med. Image Anal. 13(1), 49–61 (2009)

    Article  Google Scholar 

  80. Sabry Hassouna, M., Farag, A.A., Hushek, S., Moriarty, T.: Cerebrovascular segmentation from TOF using stochastic models. Med. Image Anal. 10(1), 2–18 (2006)

    Article  Google Scholar 

  81. Salamon, G., Huang, Y.P.: A Radiological Anatomy of the Brain. Springer, Berlin (1976)

    Google Scholar 

  82. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation and information retrieval. IEEE Trans. Image Process. 9(4), 561–576 (2000)

    Article  Google Scholar 

  83. Salembier, P., Serra, J.: Flat zone filtering, connected operators and filters by reconstruction. IEEE Trans. Image Process. 3(8), 1153–1160 (1995)

    Article  Google Scholar 

  84. Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery – CVRMed-MRCAS 1997. Lecture Notes in Computer Science, vol. 1205, pp. 213–222. Springer, Berlin (1997)

    Google Scholar 

  85. Schaap, M., Manniesing, R., Smal, I., van Walsum, T., van der Lugt, A., Niessen, W.: Bayesian tracking of tubular structures and its application to carotid arteries in CTA. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007. Lecture Notes in Computer Science, vol. 4792, pp. 562–570. Springer, Berlin (2007)

    Google Scholar 

  86. Serra, J.: Image Analysis and Mathematical Morphology. Academic, London, UK (1982)

    MATH  Google Scholar 

  87. Serra, J. (ed.): Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances. Academic, London, UK (1988)

    Google Scholar 

  88. Shahzad, R., Schaap, M., van Walsum, T., Klien, S., Weustink, A.C., van Vliet, L.J., Niessen, W.J.: A patient-specific coronary density estimate. In: International Symposium on Biomedical Imaging – ISBI 2010, pp. 9–12. IEEE (2010)

    Google Scholar 

  89. Soille, P.: Morphological Image Analysis. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  90. Soille, P., Talbot, H.: Directional morphological filtering. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1313–1329 (2001)

    Article  Google Scholar 

  91. Suh, J.W., Scheinost, D., Qian, X., Sinusas, A.J., Breuer, C.K., Papademetris, X.: Serial non rigid vascular registration using weighted normalized mutual information. In: International Symposium on Biomedical Imaging – ISBI 2010, pp. 25–28. IEEE (2010)

    Google Scholar 

  92. Sun, K.Q., Sang, N.: Morphological enhancement of vascular angiogram with multiscale detected by Gabor filters. Electron. Lett. 44(2), 86–87 (2008)

    Article  Google Scholar 

  93. Suri, J.S., Liu, K., Reden, L., Laxminarayan, S.: A review on MR vascular image processing algorithms: Acquisition and prefiltering: Part I. IEEE Trans. Inform. Technol. Biomed. 6(4), 324–337 (2002)

    Article  Google Scholar 

  94. Suri, J.S., Liu, K., Reden, L., Laxminarayan, S.: A review on MR vascular image processing: Skeleton versus nonskeleton approaches: Part II. IEEE Trans. Inform. Technol. Biomed. 6(4), 338–350 (2002)

    Article  Google Scholar 

  95. Talbot, H., Appleton, B.: Efficient complete and incomplete paths openings and closings. Image Vis. Comput. 25(4), 416–425 (2007)

    Article  Google Scholar 

  96. Tankyevych, O.: Filtering of thin objects, applications to vascular image analysis. Ph.D. thesis, University Paris-Est (2010)

    Google Scholar 

  97. Tatu, L., Moulin, T., Bogousslavsky, J., Duvernoy, H.: Arterial territories of the human brain: Brainstem and cerebellum. Neurology 47(5), 1125–1135 (1996)

    Google Scholar 

  98. Tatu, L., Moulin, T., Bogousslavsky, J., Duvernoy, H.: Arterial territories of the human brain: Cerebral hemispheres. Neurology 50(6), 1699–1708 (1998)

    Google Scholar 

  99. Thompson, P.M., Toga, A.W.: A framework for computational anatomy. Comput. Vis. Sci. 5(1), 13–34 (2002)

    Article  MATH  Google Scholar 

  100. Tizon, X., Smedby, Ö.: Segmentation with gray-scale connectedness can separate arteries and veins in MRA. J. Magn. Reson. Imaging 15(4), 438–445 (2002)

    Article  Google Scholar 

  101. Tsitsiklis, J.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40(9), 1528–1538 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  102. Tyrrell, J.A., di Tomaso, E., Fuja, D., Tong, R., Kozak, K., Jain, R.K., Roysam, B.: Robust 3-D modeling of vasculature imagery using superellipsoids. IEEE Trans. Med. Imaging 26(2), 223–237 (2007)

    Article  Google Scholar 

  103. van Bemmel, C.M., Spreeuwers, L.J., Viergever, M.A., Niessen, W.J.: Level-set-based artery-vein separation in blood pool agent CE-MR angiograms. IEEE Trans. Med. Imaging 22(10), 1224–1234 (2003)

    Article  Google Scholar 

  104. Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1565–1578 (2002)

    Article  Google Scholar 

  105. Vincent, L.: Grayscale area openings and closings, their efficient implementation and applications. In: International Symposium on Mathematical Morphology – ISMM 1993, pp. 22–27. Barcelona, Spain (1993)

    Google Scholar 

  106. Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001. Lecture Notes in Computer Science, vol. 2208, pp. 770–777. Springer, Berlin (2001)

    Google Scholar 

  107. Wilson, D.L., Noble, J.A.: An adaptive segmentation algorithm for time-of-flight MRA data. IEEE Trans. Med. Imaging 18(10), 938–945 (1999)

    Article  Google Scholar 

  108. Wink, O., Frangi, A.F., Verdonck, B., Viergever, M.A., Niessen, W.J.: 3D MRA coronary axis determination using a minimum cost path approach. Magn. Reson. Med. 47(6), 1169–1175 (2002)

    Article  Google Scholar 

  109. Wink, O., Niessen, W.J., Viergever, M.A.: Fast delineation and visualization of vessels in 3-D angiographic images. IEEE Trans. Med. Imaging 19(4), 337–346 (2000)

    Article  Google Scholar 

  110. Wong, W.C.K., Chung, A.C.S.: Probabilistic vessel axis tracing and its application to vessel segmentation with stream surfaces and minimum cost paths. Med. Image Anal. 11(6), 567–587 (2007)

    Article  Google Scholar 

  111. Wörz, S., Rohr, K.: A new 3D parametric intensity model for accurate segmentation and quantification of human vessels. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2004. Lecture Notes in Computer Science, vol. 3216, pp. 491–499. Springer, Berlin (2004)

    Google Scholar 

  112. Wörz, S., Rohr, K.: Segmentation and quantification of human vessels using a 3-D cylindrical intensity model. IEEE Trans. Image Process.16(8), 1994–2004 (2007)

    Article  MathSciNet  Google Scholar 

  113. Wyatt, C., Bayram, E., Ge, Y.: Minimum reliable scale selection in 3D. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 481–487 (2006)

    Article  Google Scholar 

  114. Yim, P.J., Choyke, P.L., Summers, R.M.: Gray-scale skeletonization of small vessels in magnetic resonance angiography. IEEE Trans. Med. Imaging 19(6), 568–576 (2000)

    Article  Google Scholar 

  115. Zahlten, C., Jürgens, H., Evertsz, C.J.G., Leppek, R., Peitgen, H.O., Klose, K.J.: Portal vein reconstruction based on topology. Eur. J. Radiol. 19(2), 96–100 (1995)

    Article  Google Scholar 

  116. Zitová, B., Flusser, J.: Image registration methods: A survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  117. Zucker, S.W.: Region growing: Childhood and adolescence. Comput. Graph. Image Process. 5(3), 382–399 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena Tankyevych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tankyevych, O., Talbot, H., Passat, N., Musacchio, M., Lagneau, M. (2011). Angiographic Image Analysis. In: Dougherty, G. (eds) Medical Image Processing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9779-1_6

Download citation

Publish with us

Policies and ethics