Skip to main content

Tortuosity as an Indicator of the Severity of Diabetic Retinopathy

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The retinal vasculature can be viewed directly and noninvasively, offering a unique and accessible window to study the health of the human microvasculature in vivo. The appearance of the retinal blood vessels is an important diagnostic indicator for much systemic pathology, including diabetes mellitus, hypertension, cardiovascular and cerebrovascular disease, and atherosclerosis [1–3]. There is mounting evidence supporting the notion that the retinal vasculature may provide a lifetime summary measure of genetic and environmental exposure, and may therefore act as a valuable risk marker for future systemic diseases [4]. Using its characteristics may provide early identification of people at risk due to diverse disease processes [5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http:www.ces.clemson.edu/ahoover/stare.

  2. 2.

    http://www.isi.uu.nl/Research/Databases/DRIVE/.

  3. 3.

    http://messidor.crihan.fr.

  4. 4.

    http://faculty.vassar.edu/lowry/VassarStats.html.

References

  1. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19, 203–210 (2000)

    Article  Google Scholar 

  2. Witt, N., Wong, T.Y., Hughes, A.D., et al.: Abnormalities of retinal vasculature structure and the risk of mortality from ischemic heart disease and stroke. Hypertension 47, 975–981 (2006)

    Article  Google Scholar 

  3. Wong, T.Y., Shankar, A., Klein, R., et al.: Retinal arteriolar narrowing, hypertension and subsequent risk of diabetes mellitus. Medicine 165, 1060–1065 (2005)

    Google Scholar 

  4. Cheung, N., Wong, T.Y., Hodgson, L.: Retinal vascular changes as biomarkers of systemic cardiovascular diseases. In: Jelinek, H.F., Cree, M.J. (eds.) Automated Image Detection of Retinal Pathology, pp. 185–219, CRC Press, Boca Raton, FL (2010)

    Google Scholar 

  5. Wong, T.Y., Mohamed, Q., Klein, R., et al.: Do retinopathy signs in non-diabetic individuals predict the subsequent risk of diabetes? Br. J. Ophthalmol. 90, 301–303 (2006)

    Article  Google Scholar 

  6. Fong, D.S., Aiello, L., Gardner, T.W., et al.: Diabetic retinopathy. Diabetes Care 26, 226–229 (2003)

    Article  Google Scholar 

  7. Dobrin, P.B., Schwarz, T.H., Baker, W.H.: Mechanisms of arterial and aneurismal tortuosity. Surgery 104, 568–571 (1988)

    Google Scholar 

  8. Wenn, C.M., Newman, D.L.: Arterial tortuosity. Aust. Phys. Eng. Sci. Med. 13, 67–70 (1990)

    Google Scholar 

  9. Dougherty, G., Varro, J.: A quantitative index for the measurement of the tortuosity of blood vessels. Med. Eng. Phys. 222, 567–574 (2000)

    Article  Google Scholar 

  10. Bor, A.S.E., Velthuis, B.K., Majoie, C.B., et al.: Configuration of intracranial arteries and development of aneurysms: a follow-up study. Neurology 70, 700–705 (2008)

    Article  Google Scholar 

  11. Klein, R., Meuer, S.M., Moss, S.E., et al.: Retinal aneurysm counts and 10-year progression of diabetic retinopathy. Arch. Ophthalmol. 113, 1386–1391 (1995)

    Google Scholar 

  12. Kohner, E.M., Stratton, I.M., Aldington, S.J., et al.: Microaneurysms in the development of diabetic retinopathy (UKPDS 42). Diabetologia 42, 1107–1112 (1999)

    Article  Google Scholar 

  13. Hellstedt, T., Immonen I.: Disappearance and formation rates of microaneurysms in early diabetic retinopathy. Br. J. Ophthalmol. 80, 135–139 (1996)

    Article  Google Scholar 

  14. Kohner, E.M., Dollery, C.T.: The rate of formation and disappearance of microaneurysms in diabetic retinopathy. Eur. J. Clin. Invest. 1, 167–171 (1970)

    Article  Google Scholar 

  15. Goatman, K.A., Cree, M.J., Olson, J.A., et al.: Automated measurement of microaneurysm turnover. Invest. Ophthalmol. Vis. Sci. 44, 5335–5341 (2003)

    Article  Google Scholar 

  16. Phillips, R.P., Spencer, T., Ross, P.G., et al.: Quantification of diabetic maculopathy by digital imaging of the fundus. Eye 5, 130–137 (1991)

    Article  Google Scholar 

  17. Phillips, R., Forrester, J., Sharp, P.: Automated detection and quantification of retinal exudates. Graefe’s Arch. Clin. Exp. Ophthalmol. 231, 90–94 (1993)

    Article  Google Scholar 

  18. Osareh, A., Shadgar, B., Markham, R.: A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images. IEEE Trans. Inf. Tech Biomed. 13, 535–545 (2009)

    Article  Google Scholar 

  19. Preece, S.J., Claridge E. Monte Carlo modeling of the spectral reflectance of the human eye. Phys. Med. Biol. 47, 2863–2877 (2002)

    Article  Google Scholar 

  20. Cree, M.J., Gamble, E., Cornforth, D.J.: Colour normalisation to reduce inter-patient and intra-patient variability in microaneurysm detection in colour retinal images. In: APRS Workshop in Digital Imaging (WDIC2005), Brisbane, Australia, pp. 163–168 (2005)

    Google Scholar 

  21. Niemeijer, M., van Ginneken, B., Cree, M.J., et al.: Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans. Med. Imaging 29, 185–195 (2010)

    Article  Google Scholar 

  22. Baudoin, C.E., Lay, B.J., Klein, J.C.: Automatic detection of microaneurysms in diabetic fluorescein angiographies. Revue D’Épidémiologie et de Sante Publique 32, 254–261 (1984)

    Google Scholar 

  23. Spencer, T., Olson, J.A., McHardy, K.C., et al.: An image-processing strategy for the segmentation and quantification in fluorescein angiograms of the ocular fundus. Comput. Biomed. Res. 29, 284–302 (1996)

    Article  Google Scholar 

  24. Cree, M.J., Olson, J.A., McHardy, K.C., et al.: A fully automated comparative microaneurysm digital detection system. Eye 11, 622–628 (1997)

    Article  Google Scholar 

  25. Frame, A.J., Undrill, P.E., Cree, M.J., et al.: A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms. Comput. Biol. Med. 28, 225–238 (1998)

    Article  Google Scholar 

  26. Streeter, L., Cree, M.J.: Microaneurysm detection in colour fundus images. In: Proceedings of the Image and Vision Computing New Zealand Conference (IVCNZ’03), Palmerston North, New Zealand, pp. 280–285 (2003)

    Google Scholar 

  27. Cree, M.J., Gamble, E., Cornforth, D.: Colour normalisation to reduce inter-patient and intra-patient variability in microaneurysm detection in colour retinal images. In: Proceedings of APRS Workshop on Digital Image Computing (WDIC2005), Brisbane, Australia, pp. 163–168 (2005)

    Google Scholar 

  28. Vincent, L.: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. Image Process. 2, 176–201 (1993)

    Article  Google Scholar 

  29. Dupas, B., Walter, T., Erginay, A., et al.: Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy. Diabetes Metab. 36, 213–220 (2010)

    Article  Google Scholar 

  30. Quellec, G., Lamard, M., Josselin, P.M., et al.: Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Trans. Med. Imaging 27, 1230–1241 (2008)

    Article  Google Scholar 

  31. Niemeijer, M., Staal, J.S., van Ginneken, B., et al.: Comparative study of retinal vessel segmentation on a new publicly available database. Proc. SPIE 5370–5379 (2004)

    Google Scholar 

  32. Staal, J., Abramoff, M., Neimeijer, Mc, et al.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)

    Google Scholar 

  33. Early Treatment Diabetic Retinopathy Study Research Group: Grading diabetic retinopathy from stereoscopic color fundus photographs – an extension of the modified Airlie House classification. ETDRS report #10. Ophthalmology 98, 786–806 (1991)

    Google Scholar 

  34. Hart, W.E., Goldbaum, M., Coté, B., et al.: Measurement and classification of retinal vascular tortuosity. Int. J. Med. Inform. 53, 239–252 (1999)

    Article  Google Scholar 

  35. Aslam, T., Fleck, B., Patton, N., et al.: Digital image analysis of plus disease in retinopathy of prematurity. Acta ophthalmol. 87, 368–377 (2009)

    Article  Google Scholar 

  36. Capowski, J.J., Kylstra, J.A., Freedman, S.F.: A numeric index based on spatial frequency for the tortuosity of retinal vessels and its application to plus disease in retinopathy of prematurity. Retina 15, 490–500 (1995)

    Google Scholar 

  37. Wallace, D.K.: Computer-assisted quantification of vascular tortuosity in retinopathy of prematurity. Trans. Am. Ophthalmol. Soc. 105, 594–615 (2007)

    Google Scholar 

  38. Owen, C.G., Rudnicka, A.R., Mullen, R., et al.: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Invest. Ophthalmol. Vis. Sci. 50, 2004–2010 (2009)

    Article  Google Scholar 

  39. Lotmar, W., Freiburghaus, A., Bracker, D.: Measurement of vessel tortuosity on fundus photographs. Graefe’s Arch. Clin. Exp. Ophthalmol. 211, 49–57 (1979)

    Article  Google Scholar 

  40. Smedby, Ö., Högman, N., Nilsson, U., et al.: Two-dimensional tortuosity of the superficial femoral artery in early atherosclerosis. J. Vasc. Res. 30, 181–191 (1993)

    Article  Google Scholar 

  41. Saidléar, C.A.: Implementation of a Quantitative Index for 3-D Arterial Tortuosity. M.Sc. thesis, University of Dublin, 2002

    Google Scholar 

  42. Bullitt, E., Gerig, G., Pizer, S.M., et al.: Measuring tortuosity of the intracerebral vasculature from MRA images. IEEE Trans. Med. Imaging 22, 1163–1171 (2003)

    Article  Google Scholar 

  43. Grisan, E., Foracchia, M., Ruggeri, A.: A novel method for the automatic evaluation of retinal vessel tortuosity. IEEE Trans. Med. Imaging 27, 310–319 (2008)

    Article  Google Scholar 

  44. Johnson, M.J., Dougherty, G.: Robust measures of three-dimensional vascular tortuosity based on the minimum curvature of approximating polynomial spline fits to the vessel mid-line. Med. Eng. Phys. 29, 677–690 (2007)

    Article  Google Scholar 

  45. Dougherty, G., Johnson, M.J.: Clinical validation of three-dimensional tortuosity metrics based on the minimum curvature of approximating polynomial splines. Med. Eng. Phys. 30, 190–198 (2008)

    Article  Google Scholar 

  46. Dougherty, G., Johnson, M.J., Wiers, M.D.: Measurement of retinal vascular tortuosity and its application to retinal pathologies. Med. Biol. Eng. Comput. 48, 87–95 (2010)

    Article  Google Scholar 

  47. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 3rd edn. Cengage Learning, Florence, KY (2007)

    Google Scholar 

  48. Dougherty G.: Digital Image Processing for Medical Applications. Cambridge University Press, Cambridge (2009) (a) pp. 259–263; (b) pp. 157–159; (c) pp. 296–301; (d) pp. 140–144

    Google Scholar 

  49. Meijering, E., Jacob, M., Sarria, J.C.F., et al.: Design and validation of a tool for Neurite tracing and analysis in fluorescence microscopy images. Cytometry A 58, 167–176 (2004)

    Article  Google Scholar 

  50. Xiong, G., Zhou, X., Degterev, A., et al.: Automated neurite labeling and analysis in fluorescence microscopy images. Cytometry A 69, 494–505 (2006)

    Google Scholar 

  51. Zhang, Y., Zhou, X., Witt, R.M., et al.: Dendritic spine detection using curvilinear structure detector and LDA classifier. Neuroimage 36, 346–360 (2007)

    Article  MATH  Google Scholar 

  52. Fan, J., Zhou, X., Dy, J.G., et al.: An automated pipeline for dendrite spine detection and tracking of 3D optical microscopy neuron images of in vivo mouse models. Neuroinformatics 7, 113–130 (2009)

    Article  Google Scholar 

  53. Yuan, X., Trachtenberg, J.T., Potter, S.M., et al.: MDL constrained 3-D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images. Neuroinformatics 7, 213–232 (2009)

    Article  Google Scholar 

  54. Sofka, M., Stewart, C.V.: Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans. Med. Imaging 25, 1531–1546 (2006)

    Article  Google Scholar 

  55. Sun, C., Vallotton, P.: Fast linear feature detection using multiple directional non-maximum suppression. J. Microsc. 234, 147–157 (2009)

    Article  MathSciNet  Google Scholar 

  56. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 77–116 (1998)

    Google Scholar 

  57. Barrett, W.A., Mortensen, E.N.: Interactive live-wire boundary extraction. Med. Image Anal. 1, 331–341 (1996)

    Article  Google Scholar 

  58. Falcão, A.X., Udupa, J.K., Samarasekera, S., et al.: User-steered image segmentation paradigms: live wire and live lane. Graph. Models Image Process. 60, 233–260 (1998)

    Article  Google Scholar 

  59. Falcão, A.X., Udupa, J.K., Miyazawa, F.K.: An ultra-fast user-steered image segmentation paradigm: LiveWire on the fly. IEEE Trans. Med. Imaging 19, 55–62 (2000)

    Article  Google Scholar 

  60. Vallotton, P., Lagerstrom, R., Sun, C., et al.: Automated analysis of neurite branching in cultured cortical neurons using HCA-vision. Cytometry A 71, 889–895 (2007)

    Google Scholar 

  61. Conrad, C., Gerlich D.W.: Automated microscopy for high-content RNAi screening. J. Cell Biol. 188, 453–461 (2010)

    Article  Google Scholar 

  62. Vallotton, P., Sun, C., Wang, D., et al.: Segmentation and tracking of individual Pseudomonas aeruginosa bacteria in dense populations of motile cells. In: Image and Vision Computing New Zealand, Wellington, New Zealand, 2009

    Google Scholar 

  63. Dougherty, G., Henebry, G.M.: Fractal signature and lacunarity in the measurement of the texture of trabecular bone in clinical CT images. Med. Eng. Phys. 23, 369–380 (2001)

    Article  Google Scholar 

  64. Family, F., Masters, B.R., Platt, D.: Fractal pattern formation in human retinal vessels. Physica D 38, 98–103 (1989)

    Article  Google Scholar 

  65. Daxer, A.: The fractal geometry of proliferative diabetic retinopathy: implications for the diagnosis and the process of retinal vasculogenesis. Curr. Eye Res. 12, 1103–1109 (1993)

    Article  Google Scholar 

  66. Avakian, A., Kalina, R.E., Sage, E.H., et al.: Fractal analysis of region-based vascular change in the normal and non-proliferative diabetic retina. Curr. Eye Res. 24, 274–280 (2002)

    Article  Google Scholar 

  67. Schepers, H.E., Van Beek, J.H.G.M., Bassingthwaighte, J.B.: Four methods to estimate the fractal dimension from self-affine signals. IEEE Eng. Med. Biol. 11, 57–64 (1992)

    Article  Google Scholar 

  68. MacGillivray, T.J., Patton, N.: A reliability study of fractal analysis of the skeletonised vascular network using the “box-counting” technique. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 4445–4448 (2006)

    Article  Google Scholar 

  69. Cheung, N., Donaghue, K.C., Liew, G., et al.: Quantitative assessment of early diabetic retinopathy using fractal analysis. Diabetes Care 32, 106–110 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge with thanks the help and assistance of Dr. Eric Meijering, Dr. Michal Sofka, and Dr. Michael Cree on issues regarding their respective software. A database of retinal images, with the microaneurysms manually identified by experts, was kindly supplied by Dr. Jean-Claude Klein of the Center of Mathematical Morphology of MINES, Paris Tech. One of us (G.D.) acknowledges the award of a Fulbright Senior Scholarship, which provided the opportunity to expand work in this area and others.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoff Dougherty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Iorga, M., Dougherty, G. (2011). Tortuosity as an Indicator of the Severity of Diabetic Retinopathy. In: Dougherty, G. (eds) Medical Image Processing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9779-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9779-1_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9769-2

  • Online ISBN: 978-1-4419-9779-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics