Skip to main content

Mechanisms of Directed Assembly of Colloidal Particles in Two Dimensions by Application of Electric Fields

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

When electric fields interact with particles immersed in liquids and levitated near electrodes, the particles assemble into structures such as ordered arrays or chains. For example, direct electric current flowing through an aqueous solution held between two parallel-plate electrodes produces two dimensional arrays of colloidal particles near one of the electrodes. A high frequency electric field imposed in-plane, by contrast, forms chains of particles. These phenomena have interested scientists and engineers for a century; the multiphysics of the phenomena make it a rich problem for both theoreticians and experimentalists. Experimental investigations into the translation of particles laterally along surfaces when electric fields are applied normally to those surfaces, and into chain formation when the field is applied tangentially, have led to proposed mechanisms and theory by which colloidal particles and even cells move relative to the nearby surface and relative to each other. These mechanisms-, electrophoresis, electroosmosis, electrohydrodynamics, induced dipole repulsion, and dielectrophoresis- and supporting experimental evidence are the main topics of this account.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Böhmer, M: In situ observation of 2-dimensional clustering during electrophoretic deposition. Langmuir 12, 5747–5750 (1996)

    Article  Google Scholar 

  2. Hermanson, K.D., Lumsdon, S.O., Williams, J.P., Kaler, E.W., Velev, O.D.: Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294, 1082–1086 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Pohl, H.: The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22, 871 (1951)

    Article  Google Scholar 

  4. Pohl, H.A.: Dielectrophoresis. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  5. Jones, T.B.: Electromechanics of Particles. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  6. Green, N.G., Ramos, A., Morgan, H.: Ac electrokinetics: a survey of sub-micrometre particle dynamics. J. Phys. D: Appl. Phys. 33, 632–641 (2000)

    Article  CAS  Google Scholar 

  7. Velev, O.D.: Assembly of electrically functional microstructures from colloidal particles. In: Caruso F. (ed.) Colloids and Colloid Assemblies. Wiley, Weinheim (2004)

    Google Scholar 

  8. Velev, O.D., Bhatt, K.H.: On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2, 738–750 (2006)

    Article  CAS  Google Scholar 

  9. Velev, O.D., Gupta, S.: Materials fabricated by micro- and nanoparticle assembly—the challenging path from science to engineering. Adv. Mater. 21, 1897–1905 (2009)

    Article  CAS  Google Scholar 

  10. Velev, O.D., Gangwal, S., Petsev, D.N.: Particle-localized AC and DC manipulation and electrokinetics. Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 105, 213–246 (2009)

    Article  CAS  Google Scholar 

  11. Lyklema, J.: Fundamentals of Interface and Colloid Science, vol. 4. Elsevier, Amsterdam (2005)

    Google Scholar 

  12. Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  13. Prieve, D.C., Sides, P.J., Wirth, C.L.: Current Opinion in Colloid and Interface Science. doi:10.1016/j.cocis.2010.01.005 (2010)

    Google Scholar 

  14. Richetti, P., Prost, J.F., Barois, P.: Two-dimensional aggregation and crystallization of a colloidal suspension of latex spheres. J. Phys. Lett. 45, 1137–1143 (1984)

    Article  CAS  Google Scholar 

  15. Giersig, M., Mulvaney, P.: Formation of ordered two-dimensional gold colloid lattices by electrophoretic deposition. J. Phys. Chem. 97, 6334–6336 (1993)

    Article  CAS  Google Scholar 

  16. Giersig, M., Mulvaney, P.: Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9, 3408–3413 (1993)

    Article  CAS  Google Scholar 

  17. Van Der Biest, O.O., Vandeperre, L.J.: Electrophoretic deposition of material. Annu. Rev. Mater. Sci. 29, 327–352 (1999)

    Article  CAS  Google Scholar 

  18. Trau, M., Saville, D.A., Aksay, I.A.: Field-induced layering of colloidal crystals. Science 272, 706–709 (1996)

    Article  CAS  PubMed  Google Scholar 

  19. Yeh, S.R., Seul, M., Shraiman, B.I.: Assembly of ordered colloidal aggregates by electric- field-induced fluid flow. Nature 386, 57–59 (1997)

    Article  CAS  Google Scholar 

  20. Solomentsev, Y., Böhmer, M., Anderson, J.L.: Particle clustering and pattern formation during electrophoretic deposition: a hydrodynamic model. Langmuir 13, 6058–6068 (1997)

    Article  CAS  Google Scholar 

  21. Trau, M., Saville, D.A., Aksay, I.A.: Assembly of colloidal crystals at electrode interfaces. Langmuir 13, 6375–6381 (1997)

    Article  CAS  Google Scholar 

  22. Solomentsev, Y., Guelcher, S.A., Bevan, M., Anderson, J.L.: Aggregation dynamics for two particles during electrophoretic deposition under steady fields. Langmuir 16, 9208–9216 (2000)

    Article  CAS  Google Scholar 

  23. Guelcher, S.A., Solomentsev, Y., Anderson, J.L.: Aggregation of pairs of particles on electrodes during electrophoretic deposition. Powder Technol. 110, 90–97 (2000)

    Article  CAS  Google Scholar 

  24. Gong, T.Y., Wu, D.T., Marr, D.W.M.: Electrically switchable colloidal ordering in confined geometries. Langmuir 17, 2301–2304 (2001)

    Article  CAS  Google Scholar 

  25. Gong, T.Y., Wu, D.T., Marr, D.W.M.: Two-dimensional electrohydrodynamically induced colloidal phases. Langmuir 18, 10064–10067 (2002)

    Article  CAS  Google Scholar 

  26. Sides, P.J.: Electrohydrodynamic particle aggregation on an electrode driven by an alternating electric field normal to it. Langmuir 17, 5791–5800 (2001)

    Article  CAS  Google Scholar 

  27. Sides, P.J.: Calculation of electrohydrodynamic flow around a single particle on an electrode. Langmuir 19, 2745–2751 (2003)

    Article  CAS  Google Scholar 

  28. Nadal, F., Argoul, F., Hanusse, P., Pouligny, B., Ajdari, A.: Electrically induced interactions between colloidal particles in the vicinity of a conducting plane. Phys. Rev. E. 65, 061409-1-5 (2002)

    Google Scholar 

  29. Kim, J., Guelcher, S.A., Garoff, S., Anderson, J.L.: Two-particle dynamics on an electrode in AC electric fields. Adv. Coll. Interface Sci. 96, 131–142 (2002)

    Article  CAS  Google Scholar 

  30. Kim, J., Anderson, J.L., Garoff, S., Sides, P.J.: Effects of zeta potential and electrolyte on particle interactions on an electrode under AC polarization. Langmuir 18, 5387–5391 (2002)

    Article  CAS  Google Scholar 

  31. Fagan, J.A., Sides, P.J., Prieve, D.C.: Vertical oscillatory motion of a single colloidal particle adjacent to an electrode in an AC electric field. Langmuir 18, 7810–7820 (2002)

    Article  CAS  Google Scholar 

  32. Prieve, D.C.: Measurement of colloidal forces with TIRM. Adv. Coll. Interface Sci. 82, 93–125 (1999)

    Article  CAS  Google Scholar 

  33. Tilton, R.D., Brisson, V.: Self-assembly and two-dimensional patterning of cell arrays by electrophoretic deposition. Biotechnol. Bioeng. 77, 290–295 (2002)

    Article  PubMed  Google Scholar 

  34. Ristenpart, W.D., Aksay, I.A., Saville, D.A.: Assembly of colloidal aggregates by electrohydrodynamic flow: kinetic experiments and scaling analysis. Phys. Rev. E. 69, 021405 (2004)

    Article  CAS  Google Scholar 

  35. Zhang, K.Q., Liu, X.Y.: In situ observation of colloidal monolayer nucleation driven by an alternating electric field. Nature 429, 739–743 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. Fagan, J.A., Sides, P.J., Prieve, D.C.: Vertical motion of a charged colloidal particle near an AC polarized electrode with a nonuniform potential distribution: theory and experimental evidence. Langmuir 20, 4823–4834 (2004)

    Article  CAS  PubMed  Google Scholar 

  37. Fagan, J.A., Sides, P.J., Prieve, D.C.: Evidence of multiple electrohydrodynamic forces acting on a colloidal particle near an electrode due to an alternating current electric field. Langmuir 21, 1784–1794 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. Liu, Y., Narayanan, J., Liu, X.Y.: Colloidal phase transition driven by alternating electric field. J. Chem. Phys. 124, 124906 (2006)

    Article  PubMed  Google Scholar 

  39. Fagan, J.A., Sides, P.J., Prieve, D.C.: Mechanism of rectified lateral motion of particles near electrodes in alternating electric fields below 1 kHz. Langmuir 22, 9846–9852 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, H., White, L.R., Tilton, R.D.: Microphase separation during binary electrophoretic deposition of particles with dissimilar polarizabilities. Coll. Surf. A. 277, 119–130 (2006)

    Article  CAS  Google Scholar 

  41. Santana-Solano, J., Wu, D.T., Marr, D.W.M.: Direct measurement of colloidal particle rotation and field dependence in alternating current electrohydrodynamic flows. Langmuir 22, 5932–5936 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. Ristenpart, W.D., Aksay, I.A., Saville, D.A.: Electrohydrodynamic flow around a colloidal particle near an electrode with an oscillating potential. J. Fluid. Mech. 575, 83–109 (2007)

    Article  CAS  Google Scholar 

  43. Ristenpart, W.D., Aksay, I.A., Saville, D.A.: Electrically driven flow near a colloidal particle close to an electrode with a faradaic current. Langmuir 23, 4071–4080 (2007)

    Article  CAS  PubMed  Google Scholar 

  44. Hoggard, J.D., Sides, P.J., Prieve, D.C.: Electrolyte-dependent pairwise particle motion near electrodes at frequencies below 1 kHz. Langmuir 23, 6983–6990 (2007)

    Article  CAS  PubMed  Google Scholar 

  45. Liu, Y., Liu, X.Y., Narayanan, J.: Kinetics and equilibrium distribution of colloidal assembly under an alternating electric field and correlation to degree of perfection of colloidal crystals. J. Phys. Chem. C. 111, 995–998 (2007)

    Article  CAS  Google Scholar 

  46. Zhang, K.Q., Liu, X.Y.: Size-dependent planar colloidal crystals guided by alternating electric field. Appl. Phys. Lett. 90, 111911(2007)

    Article  Google Scholar 

  47. Liu, Y., Xie, R.G., Liu, X.Y.: Fine tuning of equilibrium distance of two-dimensional colloidal assembly under an alternating electric field. Appl. Phys. Lett. 91, 063105 (2007)

    Article  Google Scholar 

  48. Hoggard, J.D., Sides, P.J., Prieve, D.C.: Electrolyte-dependent multiparticle motion near electrodes in oscillating electric fields. Langmuir 24, 2977–2982 (2008)

    Article  CAS  PubMed  Google Scholar 

  49. Xie, R.G., Liu, X.Y.: Epitaxial assembly and ordering of two-dimensional colloidal crystals. Appl. Phys. Lett. 92, 083106 (2008)

    Article  Google Scholar 

  50. Yariv, E.: Electro-hydrodynamic particle levitation on electrodes. J. Fluid. Mech. 645, 187–210 (2010)

    Article  Google Scholar 

  51. O’Brien, R.W., White, L.R.: Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Far. Trans. 2(74), 1607–1626 (1978)

    Article  Google Scholar 

  52. Khair, A.S., Squires, T.E.: The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys. Fluid. 21, 042001 (2009)

    Article  Google Scholar 

  53. Keh, H.J., Lien, L.C.: Electrophoresis of a dielectric sphere normal to a large conducting plane. J. Chin. Inst. Chem. Eng. 20, 283–290 (1989)

    CAS  Google Scholar 

  54. Brenner, H.: The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 16, 242–251 (1961)

    Article  CAS  Google Scholar 

  55. Newman, J.: Electrochemical Systems, 3rd. edn. Wiley, Hoboken (2004)

    Google Scholar 

  56. Breiter, M., Kleinerman, M., Delahay, P.: Structure of the double layer and electrode processes. J. Am. Chem. Soc. 80, 5111–5117 (1958)

    Article  CAS  Google Scholar 

  57. Hu, K., Fan, F.-R.F., Bard, A.J., Hillier, A.C.: Direct measurement of diffuse double-layer forces at the semiconductor/electrolyte interface using an atomic force microscope. J. Phys. Chem. B. 101, 8298–8303 (1997)

    Article  CAS  Google Scholar 

  58. Hollingsworth, A.D., Saville, D.A.: A broad frequency range dielectric spectrometer for colloidal suspensions: cell design, calibration, and validation. J. Coll. Interface Sci. 257, 65–76 (2003)

    Article  CAS  Google Scholar 

  59. O’Konski, C.: Electric properties of macromolecules. V. Theory of ionic polarization in polyelectrolytes. J. Phys. Chem. 64, 605–619 (1960)

    Article  Google Scholar 

  60. Green, N.G., Morgan, H.: Dielectrophoresis of submicrometer latex spheres. 1. Experimental results. J. Phys. Chem. B. 103, 41–50 (1999)

    Article  CAS  Google Scholar 

  61. Saville, D.A., Bellini, T., Degiorgio, V., Mantegazza, F.: An extended Maxwell–Wagner theory for the electric birefringence of charged colloids. J. Chem. Phys. 113, 6974–6983 (2000)

    Article  CAS  Google Scholar 

  62. Zhou, H., Preston, M.A., Tilton, R.D., White, L.R.: Calculation of the electric polarizability of a charged spherical dielectric particle by the theory of colloidal electrokinetics J. Coll. Interface Sci. 285, 845–856 (2005)

    Article  CAS  Google Scholar 

  63. Bahaj, A.S., Bailey, A.G.: Dielectrophoresis of small particles. Proc. IEEE/IAS Annual Meeting Cleveland OH October:154–157 (1979)

    Google Scholar 

  64. Green, N.G., Ramos, A., Gonzalez, A., Morgan, H., Castellanos, A.: Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys. Rev. E. 61, 4011–4018 (2000)

    Article  CAS  Google Scholar 

  65. Gonzalez, A., Ramos, A., Green, N.G., Castellanos, A., Morgan, H.: Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Phys. Rev. E. 61, 4019–4028 (2000)

    Article  CAS  Google Scholar 

  66. Green, N.G., Ramos, A., Gonzalez, A., Morgan, H., Castellanos, A.: Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Phys. Rev. E. 66, 026305 (2002)

    Article  CAS  Google Scholar 

  67. Castellanos, A., Ramos, A., Gonzalez, A., Green, N.G., Morgan, H.: Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J. Phys. D: Appl. Phys. 36, 2584–2597 (2003)

    Article  CAS  Google Scholar 

  68. Bazant, M.Z., Squires, T.M.: Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92, 066101 (2004)

    Article  PubMed  Google Scholar 

  69. Squires, T.M., Bazant, M.Z.: Induced-charge electro-osmosis. J. Fluid. Mech. 509, 217–252 (2004)

    Article  Google Scholar 

  70. Duval, J., Lyklema, J., Kleijn, J.M., van Leeuwen, H.P.: Amphifunctionally electrified interfaces: coupling of electronic and ionic surface-charging processes. Langmuir 17, 7573–7581 (2001)

    Article  CAS  Google Scholar 

  71. Duval, J.F.L., Huijs, G.K., Threels, W.F., Lyklema, J., van Leeuwen, H.P.: Faradaic depolarization in the electrokinetics of the metal-electrolyte solution interface. J. Coll. Interface Sci. 260(95–106), 1318 (2003)

    Google Scholar 

  72. Duval, J.F.L.: Electrokinetics of the amphifunctional metal/electrolyte solution interface in the presence of a redox couple. J. Coll. Interface Sci. 269(211–223), 1321 (2004)

    Google Scholar 

  73. Prieve, D.C.: Changes in zeta potential caused by a DC electric current for thin double layers. Coll. Surf. A. 250, 67–77 (2004)

    Article  CAS  Google Scholar 

  74. Delgado, A.V., Gonzalez-Caballero, F., Hunter, R.J., Koopal, L.K., Lyklema, J.: Measurement and interpretation of electrokinetic phenomena. J. Coll. Interface Sci. 309, 194–224 (2007)

    Article  CAS  Google Scholar 

  75. Squires, T.M.: Induced-charge electrokinetics: fundamental challenges and opportunities. Lab. Chip. 9, 2477–2483 (2009)

    Article  CAS  PubMed  Google Scholar 

  76. Bhatt, K.H., Velev, O.D.: Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. Langmuir 20, 467–476 (2004)

    Article  CAS  PubMed  Google Scholar 

  77. Gupta, S., Alargova, R.G., Kilpatrick, P.K., Velev, O.D.: On-chip dielectrophoretic coassembly of live cells and particles into responsive biomaterials. Langmuir 26, 3441–3452 (2010)

    Article  CAS  PubMed  Google Scholar 

  78. Lumsdon, S.O., Kaler, E.W., Williams, J.P., Velev, O.D.: Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals. Appl. Phys. Lett. 82, 949–951 (2003)

    Article  CAS  Google Scholar 

  79. Bhatt, K.H., Sonia Grego, S., Velev, O.D.: An AC electrokinetic technique for collection and concentration of particles and cells on electrodes. Langmuir 21, 6603–6612 (2005)

    Article  CAS  PubMed  Google Scholar 

  80. Ristenpart, W.D., Aksay, I.A., Saville, D.A.: Electrically guided assembly of planar superlattices in binary colloidal suspensions. Phys. Rev. Lett. 90, 128303 (2003)

    Article  CAS  PubMed  Google Scholar 

  81. Zhou, H., White, L.R., Tilton, R.D.: Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis. J. Coll. Interface Sci. 285, 179–191 (2005)

    Article  CAS  Google Scholar 

  82. Sides, P.J., Wirth, C.L., Prieve, D.C.: An imaging ammeter for electrochemical measurements. Patent Pending (2010)

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge the support of the National Science Foundation for research on this topic through grants CTS0089875, CTS0338089, and CBET0730391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Sides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sides, P.J., Wirth, C.L., Prieve, D.C. (2012). Mechanisms of Directed Assembly of Colloidal Particles in Two Dimensions by Application of Electric Fields. In: Dickerson, J., Boccaccini, A. (eds) Electrophoretic Deposition of Nanomaterials. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9730-2_1

Download citation

Publish with us

Policies and ethics