Skip to main content

Runtime Optimization of Force Based Models within the Hermes Project

  • Conference paper
  • First Online:

Abstract

The aim of the Hermes project is the development of an evacuation assistant to support security services in case of emergency in complex buildings and thus to improve safety at mass events. One goal of the project is to build models for pedestrian dynamics specifically designed for forecasting the emergency egress of large crowds faster than real-time using methods applied in high performance computing. We give an overview of the project and the modeling approaches used focusing on the runtime optimization and parallelization concepts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hermes – Investigation of an evacuation assistant for use in emergencies during large-scale public events. Juliche Supercomputing Centre (JSC). http://www.fz-juelich.de/jsc/hermes.

  2. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: Empirical results, modeling and applications. In: Meyers, R.A. (ed.), Encyclopedia of Complexity and System Science, pp. 3142. Springer (2009)

    Google Scholar 

  3. Rogsch, C., Seyfried, A., Klingsch, W.: Comparative Investigations of the Dynamical Simulation of Foot Traffic Flow. In: Waldau, N., Gattermann, P., Knoflacher, H., Schreckenberg, M. (ed.), Pedestrian and Evacuation Dynamics 2005, p.357-362. Springer, Berlin (2006)

    Google Scholar 

  4. Schadschneider, A., Seyfried, A.: Empirical Results for Pedestrian Dynamics and their Implications for Cellular Automata Models. In: Timmermans, H. (ed.), Pedestrian Behavior: Data Collection and Applications, p. 27-43. Emerald Group Publishing Limited (2009)

    Google Scholar 

  5. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A. 295, 507-525 (2001)

    Article  MATH  Google Scholar 

  6. Schadschneider, A.: Cellular automaton approach to pedestrian dynamics- Theory. In: Schreckenberg, M., Sharma, S.D. (Eds.), Pedestrian and Evacuation Dynamics, pp. 75. Springer (2002)

    Google Scholar 

  7. Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Simulation of competitive egress behavior: Comparison with aircraft evacuation data. Physica A. 324, pp. 689 (2003)

    Article  MATH  Google Scholar 

  8. Schadschneider, A., et al.: Runtime Optimization of Force Based Models within the Hermes Project (2010)

    Google Scholar 

  9. Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J. Stat. Mech. P10011 (2004)

    Google Scholar 

  10. Chraibi, M., Seyfried, A., Schadschneider, A., Mackens, M.: Quantitative verification of a force based model for pedestrian dynamics. http://arxiv.org/abs/0912.4044. To appear in Traffic and Granular Flow 2009 (2010)

  11. Mori, M., Tsukaguchi, H.: A new method for evaluation of level of service in pedestrian facilities. Transp. Res. 21A(3), 223–234 (1987)

    Google Scholar 

  12. Helbing, D., Johansson, A., Al-Abideen, H.Z.: Dynamics of Crowd Disasters: An Empirical Study. Phys. Rev. E. 75, 046109 (2007)

    Article  Google Scholar 

  13. Oeding, D.: Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fußgängerverkehrs. Forschungsbericht 22, Technische Hochschule Braunschweig (1963)

    Google Scholar 

  14. Hankin, B.D., Wright, R.A.: Passenger Flow in Subways. Operational Research Quarterly. 9, 81–88 (1958)

    Article  Google Scholar 

  15. Seyfried, A., Rupprecht, T., Passon, O., Steffen, B., Klingsch, W., Boltes, M.: New insights into pedestrian flow through bottlenecks. Transportation Science. 43, 395-406 (2009)

    Article  Google Scholar 

  16. Kretz, T., Grünebohm, A., Schreckenberg, M.: Experimental study of pedestrian flow through a bottleneck. J. Stat. Mech. 10, P10014 (2006)

    Article  Google Scholar 

  17. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford Science Publications, Oxford (1987)

    MATH  Google Scholar 

  18. Sutmann, G., Stegailov, V.: Optimization of neighbor list techniques in liquid matter simulations. Journal of Molecular Liquids, Complex Liquids – Fundamental Properties to Industrial Applications. Volume 125, Issues 2-3, 15, 197-203 (2006)

    Google Scholar 

  19. Verlet, L.: Computer experiments on classical fluids, I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. E. 159, 98 (1967)

    Article  Google Scholar 

  20. Cell Broadband Engine Architecture. Version 1.02. https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/1AEEE1270EA2776387257060006E61BA/$file/CBEA_v1.02_11Oct2007_pub.pdf. Assessed 11 October 2007

  21. Reynolds, C.: Big fast crowds on PS3. Proc. 2006 ACM SIGGRAPH symposium on Videogames, p. 113-121. Boston (2006)

    Google Scholar 

Download references

Acknowledgments

This work has been performed within the program “Research for Civil Security” in the field “Protecting and Saving Human Life" funded by the German Government, Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Seyfried .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Seyfried, A., Chraibi, M., Kemloh, U., Mehlich, J., Schadschneider, A. (2011). Runtime Optimization of Force Based Models within the Hermes Project. In: Peacock, R., Kuligowski, E., Averill, J. (eds) Pedestrian and Evacuation Dynamics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9725-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9725-8_33

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9724-1

  • Online ISBN: 978-1-4419-9725-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics