Skip to main content

Going Beyond Continuous Glucose Monitoring with Boronic Acid-Appended Bipyridinium Salts

  • Chapter
  • First Online:
Book cover Reviews in Fluorescence 2009

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2009))

Abstract

A two-component sensing system comprising a fluorescent dye and a boronic acid-containing molecule that acts dually as a fluorescence quencher and a saccharide receptor was developed for continuous glucose monitoring in blood. Boronic acid-based bipyridinium salts as tunable receptors have been introduced to increase glucose selectivity over that of other boronate-forming analytes. Powerful solution-phase sensor arrays for neutral and anionic carbohydrates were created with these probes. They can be also used in new label-free fluorescent assays for carbohydrate-modifying enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lorand JP, Edwards JO (1959) Polyol complexes and structure of the benzeneboronate ion. J Org Chem 24:769–774

    CAS  Google Scholar 

  2. Sugihara JM, Bowman CM (1958) Cyclic benzeneboronate esters. J Am Chem Soc 80:2443–2446

    CAS  Google Scholar 

  3. Kuivila HG, Keough AH, Soboczenski EJ (1954) Areneboronates from diols and polyols. J Org Chem 19:780–783

    CAS  Google Scholar 

  4. Yan J, Fang H, Wang B (2005) Boronolectins and fluorescent boronolectins: an examination of the detailed chemistry issues important for the design. Med Res Rev 25(5):490–520

    PubMed  CAS  Google Scholar 

  5. Wang W, Gao X, Wang B (2002) Boronic acid-based sensors. Curr Org Chem 6(14):1285–1317

    CAS  Google Scholar 

  6. Striegler S (2003) Selective carbohydrate recognition by synthetic receptors in aqueous solution. Curr Org Chem 7(1):81–102

    CAS  Google Scholar 

  7. James TD, Shinkai S (2002) Artificial receptors as chemosensors for carbohydrates. Top Curr Chem 218:159–200

    CAS  Google Scholar 

  8. Mader HS, Wolfbeis OS (2008) Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim Acta 162(1–2):1–34

    CAS  Google Scholar 

  9. Egawa Y, Gotoh R, Niina S, Anzai J-I (2007) Ortho-azo substituted phenylboronic acids for colorimetric sugar sensors. Bioorg Med Chem Lett 17(13):3789–3792

    PubMed  CAS  Google Scholar 

  10. Ni W, Fang H, Springsteen G, Wang B (2004) The design of boronic acid spectroscopic reporter compounds by taking advantage of the pKa-lowering effect of diol binding: nitrophenol-based color reporters for diols. J Org Chem 69(6):1999–2007

    PubMed  CAS  Google Scholar 

  11. Ward CJ, Patel P, James TD (2002) Boronic acid appended azo dyes-colour sensors for saccharides. J Chem Soc Perkin Trans 1(4):462–470

    Google Scholar 

  12. Ward CJ, Patel P, James TD (2002) Molecular color sensors for monosaccharides. Org Lett 4(4):477–479

    PubMed  CAS  Google Scholar 

  13. DiCesare N, Lakowicz JR (2001) New color chemosensors for monosaccharides based on azo dyes. Org Lett 3(24):3891–3893

    PubMed  CAS  Google Scholar 

  14. Wentholt Iris M, Vollebregt Marit A, Hart Augustus A, Hoekstra Joost B, DeVries JH (2005) Comparison of a needle-type and a microdialysis continuous glucose monitor in type 1 diabetic patients. Diabetes Care 28(12):2871–2876

    PubMed  CAS  Google Scholar 

  15. Wilson Darrell M, Block J (2005) Real-time continuous glucose monitor use and patient selection: what have we learned and where are we going? Diab Technol Ther 7(5):788–791

    CAS  Google Scholar 

  16. Heinemann L, Schmelzeisen-Redeker G (1998) Non-invasive continuous glucose monitoring in type I diabetic patients with optical glucose sensors. Diabetologia 41(7):848–854

    PubMed  CAS  Google Scholar 

  17. Garg SK, Hoff HK, Chase HP (2004) The role of continuous glucose sensors in diabetes care. Endocrinol Metab Clin North Am 33(1):163–173

    PubMed  CAS  Google Scholar 

  18. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354(5):449–461

    PubMed  Google Scholar 

  19. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345(19):1359–1367

    PubMed  Google Scholar 

  20. Robertson A, Shinkai S (2000) Cooperative binding in selective sensors, catalysts and actuators. Coord Chem Rev 205(1):157–199

    CAS  Google Scholar 

  21. Tsukagoshi K, Shinkai S (1991) Specific complexation with mono- and disaccharides that can be detected by circular dichroism. J Org Chem 56(13):4089–4091

    CAS  Google Scholar 

  22. Shiomi Y, Saisho M, Tsukagoshi K, Shinkai S (1993) Specific complexation of glucose with a diphenylmethane-3,3′-diboronic acid derivative: correlation between the absolute configuration of mono- and disaccharides and the circular dichroic-activity of the complex. J Chem Soc Perkin Trans 1(17):2111–2117

    Google Scholar 

  23. James TD, Sandanayake KRAS, Shinkai S (1994) A glucose-specific molecular fluorescence sensor. Angew Chem Int Ed 106(21):2287–2289

    CAS  Google Scholar 

  24. Norrild JC, Eggert H (1995) Evidence for mono- and bisdentate boronate complexes of glucose in the furanose form. Application of 1JC-C coupling constants as a structural probe. J Am Chem Soc 117(5):1479–1484

    CAS  Google Scholar 

  25. Yang W, He H, Drueckhammer DG (2001) Computer-guided design in molecular recognition: design and synthesis of a glucopyranose receptor. Angew Chem Int Ed 40(9):1714–1718

    CAS  Google Scholar 

  26. Wiskur SL, Ait-Haddou H, Lavigne JJ, Anslyn EV (2001) Teaching old indicators new tricks. Acc Chem Res 34(12):963–972

    PubMed  CAS  Google Scholar 

  27. Anslyn EV (2007) Supramolecular analytical chemistry. J Org Chem 72(3):687–699

    PubMed  CAS  Google Scholar 

  28. Martinez-Manez R, Sancenon F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103(11):4419–4476

    PubMed  CAS  Google Scholar 

  29. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  30. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97(5):1515–1566

    PubMed  Google Scholar 

  31. Ogoshi T, Harada A (2008) Chemical sensors based on cyclodextrin derivatives. Sensors 8:4961–4982

    CAS  Google Scholar 

  32. Nguyen BT, Anslyn EV (2006) Indicator-displacement assays. Coord Chem Rev 250(23–24):3118–3127

    CAS  Google Scholar 

  33. Shabbir SH, Regan CJ, Anslyn EV (2009) A general protocol for creating high-throughput screening assays for reaction yield and enantiomeric excess applied to hydrobenzoin. Proc Natl Acad Sci 106(26):10487–10492

    PubMed  CAS  Google Scholar 

  34. Kitamura M, Shabbir SH, Anslyn EV (2009) Guidelines for pattern recognition using differential receptors and indicator displacement assays. J Org Chem 74(12):4479–4489

    PubMed  CAS  Google Scholar 

  35. Leung D, Anslyn EV (2008) Transitioning enantioselective indicator displacement assays for amino acids to protocols amenable to high-throughput screening. J Am Chem Soc 130(37):12328–12333

    PubMed  CAS  Google Scholar 

  36. Rochat S, Gao J, Qian X, Zaubitzer F, Severin K (2010) Cross-reactive sensor arrays for the detection of peptides in aqueous solution by fluorescence spectroscopy. Chem Eur J 16(1):104–113

    PubMed  CAS  Google Scholar 

  37. Buryak A, Pozdnoukhov A, Severin K (2007) Pattern-based sensing of nucleotides in aqueous solution with a multicomponent indicator displacement assay. Chem Commun 23:2366–2368

    Google Scholar 

  38. Zaubitzer F, Buryak A, Severin K (2006) Cp*Rh-based indicator-displacement assays for the identification of amino sugars and aminoglycosides. Chem Eur J 12(14):3928–3934

    PubMed  CAS  Google Scholar 

  39. Buryak A, Severin K (2005) A chemosensor array for the colorimetric identification of 20 natural amino acids. J Am Chem Soc 127(11):3700–3701

    PubMed  CAS  Google Scholar 

  40. Buryak A, Severin K (2005) Dynamic combinatorial libraries of dye complexes as sensors. Angew Chem Int Ed 44(48):7935–7938

    CAS  Google Scholar 

  41. Buryak A, Severin K (2004) An organometallic chemosensor for the sequence-selective detection of histidine- and methionine-containing peptides in water at neutral pH. Angew Chem Int Ed 43(36):4771–4774

    CAS  Google Scholar 

  42. Singaram B, Wessling RA (2003) Polyhydroxyl-substituted organic molecule sensing method and device. United States Patent 6653141

    Google Scholar 

  43. Vilozny B, Schiller A, Wessling RA, Singaram B (2009) Enzyme assays with boronic acid appended bipyridinium salts. Anal Chim Acta 649(2):246–251

    PubMed  CAS  Google Scholar 

  44. Sharrett Z, Gamsey S, Hirayama L, Vilozny B, Suri JT, Wessling RA, Singaram B (2009) Exploring the use of APTS as a fluorescent reporter dye for continuous glucose sensing. Org Biomol Chem 7(7):1461–1470

    PubMed  CAS  Google Scholar 

  45. Schiller A, Vilozny B, Wessling RA, Singaram B (2008) Recognition of phospho sugars and nucleotides with an array of boronic acid appended bipyridinium salts. Anal Chim Acta 627(2):203–211

    PubMed  CAS  Google Scholar 

  46. Sharrett Z, Gamsey S, Levine P, Cunningham-Bryant D, Vilozny B, Schiller A, Wessling RA, Singaram B (2008) Boronic acid-appended bis-viologens as a new family of viologen quenchers for glucose sensing. Tetrahedron Lett 49:300–304

    CAS  Google Scholar 

  47. Sharrett Z, Gamsey S, Fat J, Cunningham-Bryant D, Wessling RA, Singaram B (2007) The effect of boronic acid acidity on performance of viologen-based boronic acids in a two-component optical glucose-sensing system. Tetrahedron Lett 48(29):5125–5129

    CAS  Google Scholar 

  48. Schiller A, Wessling RA, Singaram B (2007) A fluorescent sensor array for saccharides based on boronic acid appended bipyridinium salts. Angew Chem Int Ed 46(34):6457–6459

    CAS  Google Scholar 

  49. Gamsey S, Miller A, Olmstead MM, Beavers CM, Hirayama LC, Pradhan S, Wessling RA, Singaram B (2007) Boronic acid-based bipyridinium salts as tunable receptors for monosaccharides and α-hydroxycarboxylates. J Am Chem Soc 129(5):1278–1286

    PubMed  CAS  Google Scholar 

  50. Cordes DB, Miller A, Gamsey S, Singaram B (2007) Simultaneous use of multiple fluorescent reporter dyes for glucose sensing in aqueous solution. Anal Bioanal Chem 387:2767–2773

    PubMed  CAS  Google Scholar 

  51. Thoniyot P, Cappucio FE, Gamsey S, Cordes DB, Wessling RA, Singaram B (2006) Continuous glucose sensing with fluorescent thin-film hydrogels. 2. Fiber optic sensor fabrication and in vitro testing. Diab Technol Ther 8(3):279–287

    CAS  Google Scholar 

  52. Gamsey S, Suri JT, Wessling RA, Singaram B (2006) Continuous glucose detection using boronic acid-substituted viologens in fluorescent hydrogels: linker effects and extension to fiber optics. Langmuir 22(21):9067–9074

    PubMed  CAS  Google Scholar 

  53. Gamsey S, Baxter NA, Sharrett Z, Cordes DB, Olmstead MM, Wessling RA, Singaram B (2006) The effect of boronic acid-positioning in an optical glucose-sensing ensemble. Tetrahedron 62(26):6321–6331

    CAS  Google Scholar 

  54. Cordes DB, Gamsey S, Singaram B (2006) Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution. Angew Chem Int Ed 45:3829–3832

    CAS  Google Scholar 

  55. Cordes DB, Miller A, Gamsey S, Sharrett Z, Thoniyot P, Wessling R, Singaram B (2005) Optical glucose detection across the visible spectrum using anionic fluorescent dyes and a viologen quencher in a two-component saccharide sensing system. Org Biomol Chem 3(9):1708–1713

    PubMed  CAS  Google Scholar 

  56. Cordes DB, Gamsey S, Sharrett Z, Miller A, Thoniyot P, Wessling RA, Singaram B (2005) The interaction of boronic acid-substituted viologens with pyranine: the effects of quencher charge on fluorescence quenching and glucose response. Langmuir 21(14):6540–6547

    PubMed  CAS  Google Scholar 

  57. Cappuccio FE, Suri JT, Cordes DB, Wessling RA, Singaram B (2004) Evaluation of pyranine derivatives in boronic acid based saccharide sensing: significance of charge interaction between dye and quencher in solution and hydrogel. J Fluoresc 14(5):521–533

    PubMed  CAS  Google Scholar 

  58. Suri JT, Cordes DB, Cappuccio FE, Wessling RA, Singaram B (2003) Monosaccharide detection with 4,7-phenanthrolinium salts: charge-induced fluorescence sensing. Langmuir 19(12):5145–5152

    CAS  Google Scholar 

  59. Suri JT, Cordes DB, Cappuccio FE, Wessling RA, Singaram B (2003) Continuous glucose sensing with a fluorescent thin-film hydrogel. Angew Chem Int Ed 42(47):5857–5859

    CAS  Google Scholar 

  60. Camara JN, Suri JT, Cappuccio FE, Wessling RA, Singaram B (2002) Boronic acid substituted viologen based optical sugar sensors: modulated quenching with viologen as a method for monosaccharide detection. Tetrahedron Lett 43(7):1139–1141

    CAS  Google Scholar 

  61. Zisser H (2009) Accuracy of a novel intravascular fluorescent continuous glucose sensor. American Diabetes Association Meeting, New Orleans, LA

    Google Scholar 

  62. De Borba EB, Amaral CLC, Politi MJ, Villalobos R, Baptista MS (2000) Photophysical and photochemical properties of pyranine/methyl viologen complexes in solution and in supramolecular aggregates: a switchable complex. Langmuir 16(14):5900–5907

    Google Scholar 

  63. Blondeel G, De Keukeleire D, Harriman A, Milgrom LR (1985) Fluorescence of covalently bound zinc porphyrin–viologen complexes. Chem Phys Lett 118(1):77–82

    CAS  Google Scholar 

  64. Yanuck MD, Schmehl RH (1985) Effects of non-electrolyte polymers on photoinduced electron transfer reactions. Influence of aqueous poly(vinyl alcohol) on quenching of tetraanionic porphyrins by methyl viologen. Chem Phys Lett 122(1–2):133–138

    CAS  Google Scholar 

  65. Nakashima K, Kido N (1996) Fluorescence quenching of 1-pyrenemethanol by methylviologen in polystyrene latex dispersions. Photochem Photobiol 64(2):296–302

    CAS  Google Scholar 

  66. Kusumoto Y, Uchikoba M (1991) The formation of ground-state nonfluorescent complex between chlorophyll a and methylviologen in methanol solution. Chem Lett 11:1985–1988

    Google Scholar 

  67. Kusumoto Y, Watanabe J, Kurawaki J, Satake I (1987) Selective fluorescence quenching of chlorophyll a-N-methylmyristamide system by methyl viologen in aqueous sodium dodecyl sulfate solution. Chem Lett 7:1417–1420

    Google Scholar 

  68. Chen L, McBranch DW, Wang H-L, Helgeson R, Wudl F, Whitten DG (1999) Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proc Natl Acad Sci 96(22):12287–12292

    PubMed  CAS  Google Scholar 

  69. Wang D, Wang J, Moses D, Bazan GC, Heeger AJ (2001) Photoluminescence quenching of conjugated macromolecules by bipyridinium derivatives in aqueous media: charge dependence. Langmuir 17(4):1262–1266

    CAS  Google Scholar 

  70. Gaylord BS, Wang S, Heeger AJ, Bazan GC (2001) Water-soluble conjugated oligomers: effect of chain length and aggregation on photoluminescence-quenching efficiencies. J Am Chem Soc 123(26):6417–6418

    PubMed  CAS  Google Scholar 

  71. Pia E, Toba R, Chas M, Peinador C, Quintela JM (2006) Synthesis of new viologen macrocycles with intramolecular charge transfer. Tetrahedron Lett 47(12):1953–1956

    CAS  Google Scholar 

  72. Monk PMS, Hodgkinson NM (1997) Charge-transfer complexes of the viologens: effects of complexation and the rate of electron transfer to methyl viologen. Electrochim Acta 43(3–4):245–255

    Google Scholar 

  73. Tsukahara K, Kaneko J, Miyaji T, Abe K (1996) Charge-transfer interaction between bipyridinium and naphthyl groups of optically active viologens in an aqueous solution. Tetrahedron Lett 37(18):3149–3152

    CAS  Google Scholar 

  74. Yoon KB (1993) Electron- and charge-transfer reactions within zeolites. Chem Rev 93(1):321–339

    CAS  Google Scholar 

  75. Alvaro M, Ferrer B, Fornes V, Garcia H (2003) Comparison between MCM-41 and periodic mesoporous organosilica: charge-transfer donor-viologen complexes as probes. Chem Phys Chem 4(6):612–617

    PubMed  CAS  Google Scholar 

  76. Matos MS, Gehlen MH (1998) Spectroscopic and kinetic study of the molecular association between pyrene and benzyl viologen. Spectrochim Acta A Mol Spectrosc 54A(12):1857–1867

    CAS  Google Scholar 

  77. Farrugia LJ (1997) Ortep-3 for windows. J Appl Cryst 30:565

    CAS  Google Scholar 

  78. Yoon KB, Kochi JK (1989) Shape-selective access to zeolite supercages. Arene charge-transfer complexes with viologens as visible probes. J Am Chem Soc 111(3):1128–1130

    CAS  Google Scholar 

  79. Kidowaki M, Tamaoki N (2003) Unique crystal structures of donor-acceptor complexes: crossed arrangement of two charge-transfer columns. Chem Commun 290291

    Google Scholar 

  80. Yoshikawa H, Nishikiori S-I (2005) Crystal structures and spectroscopic properties of polycyano-polycadmate host clathrates including a CT complex guest of methylviologen dication and aromatic donor. Dalton Trans 18:3056–3064

    PubMed  Google Scholar 

  81. Nishikiori S-I, Yoshikawa H, Sano Y, Iwamoto T (2005) Inorganic-organic hybrid molecular architectures of cyanometalate host and organic guest systems: specific behavior of the guests. Acc Chem Res 38(4):227–234

    PubMed  CAS  Google Scholar 

  82. Willner I, Eichen Y, Rabinovitz M, Hoffman R, Cohen S (1992) Structure and thermodynamic and kinetic properties of eosin–bipyridinium complexes. J Am Chem Soc 114(2):637–644

    CAS  Google Scholar 

  83. Cao H, Diaz DI, DiCesare N, Lakowicz JR, Heagy MD (2002) Monoboronic acid sensor that displays anomalous fluorescence sensitivity to glucose. Org Lett 4(9):1503–1505

    PubMed  CAS  Google Scholar 

  84. Gray CW Jr, Houston TA (2002) Boronic acid receptors for a-hydroxycarboxylates: high affinity of Shinkai’s glucose receptor for tartrate. J Org Chem 67(15):5426–5428

    PubMed  CAS  Google Scholar 

  85. Zhao J, Davidson MG, Mahon MF, Kociok-Koehn G, James TD (2004) An enantioselective fluorescent sensor for sugar acids. J Am Chem Soc 126(49):16179–16186

    PubMed  CAS  Google Scholar 

  86. Collins BE, Sorey S, Hargrove AE, Shabbir SH, Lynch VM, Anslyn EV (2009) Probing intramolecular B–N interactions in ortho-aminomethyl arylboronic acids. J Org Chem 74(11):4055–4060

    PubMed  CAS  Google Scholar 

  87. Zhu L, Shabbir SH, Gray M, Lynch VM, Sorey S, Anslyn EV (2006) A structural investigation of the N–B interaction in an o-(N,N-dialkylaminomethyl)arylboronate system. J Am Chem Soc 128(4):1222–1232

    PubMed  CAS  Google Scholar 

  88. Katzin LI, Gulyas E (1966) Optical rotatory dispersion studies on the borotartrate complexes and remarks on the aqueous chemistry of boric acid. J Am Chem Soc 88(22):5209–5212

    CAS  Google Scholar 

  89. Friedman S, Pace B, Pizer R (1974) Complexation of phenylboronic acid with lactic acid. Stability constant and reaction kinetics. J Am Chem Soc 96(17):5381–5384

    CAS  Google Scholar 

  90. Kustin K, Pizer R (1969) Temperature-jump study of the rate and mechanism of the boric acid-tartaric acid complexation. J Am Chem Soc 91(2):317–322

    CAS  Google Scholar 

  91. Lavigne JJ, Anslyn EV (1999) Teaching old indicators new tricks: a colorimetric chemosensing ensemble for tartrate/malate in beverages. Angew Chem Int Ed 38(24):3666–3669

    CAS  Google Scholar 

  92. Wiskur SL, Floriano PN, Anslyn EV, McDevitt JT (2003) A multicomponent sensing ensemble in solution: differentiation between structurally similar analytes. Angew Chem Int Ed 42(18):2070–2072

    CAS  Google Scholar 

  93. Wiskur SL, Lavigne JJ, Metzger A, Tobey SL, Lynch V, Anslyn EV (2004) Thermodynamic analysis of receptors based on guanidinium/boronic acid groups for the complexation of carboxylates, a-hydroxycarboxylates, and diols: driving force for binding and cooperativity. Chem Eur J 10(15):3792–3804

    PubMed  CAS  Google Scholar 

  94. Manimala JC, Wiskur SL, Ellington ED, Anslyn EV (2004) Tuning the specificity of a synthetic receptor using a selected nucleic acid receptor. J Am Chem Soc 126(50):16515–16519

    PubMed  CAS  Google Scholar 

  95. Bird CL, Kuhn AT (1981) Electrochemistry of the viologens. Chem Soc Rev 10(1):49–82

    CAS  Google Scholar 

  96. Geuder W, Hünig S, Suchy A (1986) Single and double bridged viologenes and intramolecular pimerization of their cation radicals. Tetrahedron 42(6):1665–1677

    CAS  Google Scholar 

  97. Monk PMS, Hodgkinson NM, Ramzan SA (1999) Spin pairing dimerisation of the viologen radical cation: kinetics and equilibria. Dyes Pigm 43(3):207–217

    CAS  Google Scholar 

  98. Neta P, Richoux MC (1985) Intramolecular association of covalently linked viologen radicals. J Chem Soc Faraday Trans 2(81):1427–1443

    Google Scholar 

  99. Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107(4):1339–1386

    PubMed  CAS  Google Scholar 

  100. Wolfbeis OS (2006) Fiber-optic chemical sensors and biosensors. Anal Chem 78(12):3859–3874

    PubMed  CAS  Google Scholar 

  101. Bentley R (2006) The nose as a stereochemist. Enantiomers and odor. Chem Rev 106:4099–4112

    PubMed  CAS  Google Scholar 

  102. Jelinek R, Kolusheva S (2004) Carbohydrate biosensors. Chem Rev 104:5987–6016

    PubMed  CAS  Google Scholar 

  103. Tsukube H, Shinoda S (2002) Lanthanide complexes in molecular recognition and chirality sensing of biological substrates. Chem Rev 102:2389–2404

    PubMed  CAS  Google Scholar 

  104. Bell TW, Hext NM (2004) Supramolecular optical chemosensors for organic analytes. Chem Soc Rev 33:589–598

    PubMed  CAS  Google Scholar 

  105. Mori K, Takahashi YK, Igarashi KM, Yamaguchi M (2006) Maps of odorant molecular features in the mammalian olfactory bulb. Physiol Rev 86:409–433

    PubMed  CAS  Google Scholar 

  106. Lewis NS (2004) Comparisons between mammalian and artificial olfaction based on arrays of carbon black-polymer composite vapor detectors. Acc Chem Res 37(9):663–672

    PubMed  CAS  Google Scholar 

  107. Wright AT, Anslyn EV (2006) Differential receptor arrays and assays for solution-based molecular recognition. Chem Soc Rev 35:14–28

    PubMed  CAS  Google Scholar 

  108. Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000) Cross-reactive chemical sensor arrays. Chem Rev 100(7):2595–2626

    PubMed  CAS  Google Scholar 

  109. Palacios MA, Wang Z, Montes VA, Zyryanov GV, Anzenbacher P (2008) Rational design of a minimal size sensor array for metal ion detection. J Am Chem Soc 130(31):10307–10314

    PubMed  CAS  Google Scholar 

  110. Hewage HS, Anslyn EV (2009) Pattern-based recognition of thiols and metals using a single squaraine indicator. J Am Chem Soc 131(36):13099–13106

    PubMed  CAS  Google Scholar 

  111. Janzen MC, Ponder JB, Bailey DP, Ingison CK, Suslick KS (2006) Colorimetric sensor arrays for volatile organic compounds. Anal Chem 78(11):3591–3600

    PubMed  CAS  Google Scholar 

  112. Leung D, Folmer-Andersen JF, Lynch VM, Anslyn EV (2008) Using enantioselective indicator displacement assays to determine the enantiomeric excess of α-amino acids. J Am Chem Soc 130(37):12318–12327

    PubMed  CAS  Google Scholar 

  113. You C-C, Miranda OR, Gider B, Ghosh PS, Kim I-B, Erdogan B, Krovi SA, Bunz UHF, Rotello VM (2007) Detection and identification of proteins using nanoparticle-fluorescent polymer “chemical nose” sensors. Nat Nanotechnol 2(5):318–323

    PubMed  CAS  Google Scholar 

  114. Sandanaraj BS, Demont R, Thayumanavan S (2007) Generating patterns for sensing using a single receptor scaffold. J Am Chem Soc 129(12):3506–3507

    PubMed  CAS  Google Scholar 

  115. Miranda OR, You C-C, Phillips R, Kim I-B, Ghosh PS, Bunz UHF, Rotello VM (2007) Array-based sensing of proteins using conjugated polymers. J Am Chem Soc 129:9856–9857

    PubMed  CAS  Google Scholar 

  116. Zhou H, Baldini L, Hong J, Wilson AJ, Hamilton AD (2006) Pattern recognition of proteins based on an array of functionalized porphyrins. J Am Chem Soc 128:2421–2425

    PubMed  CAS  Google Scholar 

  117. Zyryanov GV, Palacios MA, Pavel Anzenbacher J (2007) Rational design of a fluorescence-turn-on sensor array for phosphates in blood serum. Angew Chem Int Ed 46:7849–7852

    CAS  Google Scholar 

  118. Green E, Olah MJ, Abramova T, Williams LR, Stefanovic D, Worgall T, Stojanovic MN (2006) A rational approach to minimal high-resolution cross-reactive arrays. J Am Chem Soc 128:15278–15282

    PubMed  CAS  Google Scholar 

  119. Greene NT, Shimizu KD (2005) Colorimetric molecularly imprinted polymer sensor array using dye displacement. J Am Chem Soc 127(15):5695–5700

    PubMed  CAS  Google Scholar 

  120. Adams MM, Anslyn EV (2009) Differential sensing using proteins: exploiting the cross-reactivity of serum albumin to pattern individual terpenes and terpenes in perfume. J Am Chem Soc 131(47):17068–17069

    PubMed  CAS  Google Scholar 

  121. Edwards NY, Sager TW, McDevitt JT, Anslyn EV (2007) Boronic acid based peptidic receptors for pattern-based saccharide sensing in neutral aqueous media, an application in real-life samples. J Am Chem Soc 129:13575–13583

    PubMed  CAS  Google Scholar 

  122. Lee JW, Lee J-S, Chang Y-T (2006) Colorimetric identification of carbohydrates by a pH indicator/pH change inducer ensemble. Angew Chem Int Ed 45(39):6485–6487

    CAS  Google Scholar 

  123. Zhang C, Suslick KS (2007) Colorimetric sensor array for soft drink analysis. J Agric Food Chem 55:237–242

    PubMed  CAS  Google Scholar 

  124. Piatek AM, Bomble YJ, Wiskur SL, Anslyn EV (2004) Threshold detection using indicator-displacement assays: an application in the analysis of malate in Pinot Noir grapes. J Am Chem Soc 126(19):6072–6077

    PubMed  CAS  Google Scholar 

  125. Buryak A, Severin K (2006) Easy to optimize: dynamic combinatorial libraries of metal-dye complexes as flexible sensors for tripeptides. J Comb Chem 8(4):540–543

    PubMed  CAS  Google Scholar 

  126. Eggert H, Frederiksen J, Morin C, Norrild JC (1999) A new glucose-selective fluorescent bisboronic acid. First report of strong a-furanose complexation in aqueous solution at physiological pH. J Org Chem 64(11):3846–3852

    CAS  Google Scholar 

  127. Bielecki M, Eggert H, Norrild JC (1999) A fluorescent glucose sensor binding covalently to all five hydroxy groups of a-d-glucofuranose: a reinvestigation. J Chem Soc Perkin Trans 2(3):449–456

    Google Scholar 

  128. Jurs PC, Bakken GA, McClelland HE (2000) Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem Rev 100(7):2649–2678

    PubMed  CAS  Google Scholar 

  129. Wright EM, Diamond JM (1977) Anion selectivity in biological systems. Physiol Rev 57(1):109–156

    PubMed  CAS  Google Scholar 

  130. Schmidtchen FP (2006) Reflections on the construction of anion receptors: is there a sign to resign from design? Coord Chem Rev 250(23–24):2918–2928

    CAS  Google Scholar 

  131. Gamez P, Mooibroek T, Teat S, Reedijk J (2007) Anion binding involving acidic heteroaromatic rings. Acc Chem Res 40(6):435–444

    PubMed  CAS  Google Scholar 

  132. O'Neil EJ, Smith BD (2006) Anion recognition using dimetallic coordination complexes. Coord Chem Rev 250(23–24):3068–3080

    Google Scholar 

  133. Imada T, Kijima H, Takeuchi M, Shinkai S (1996) Selective binding of glucose-6-phosphate, 3,4-dihydroxyphenylalanine (DOPA) and their analogs with a boronic-acid-appended metalloporphyrin. Tetrahedron 52(8):2817–2826

    CAS  Google Scholar 

  134. Cabell LA, Monahan M-K, Anslyn EV (1999) A competition assay for determining glucose-6-phosphate concentration with a tris-boronic acid receptor. Tetrahedron Lett 40(44):7753–7756

    CAS  Google Scholar 

  135. Zhang T, Anslyn EV (2006) A colorimetric boronic acid based sensing ensemble for carboxy and phospho sugars. Org Lett 8(8):1649–1652

    PubMed  CAS  Google Scholar 

  136. Patterson S, Smith BD, Taylor RE (1997) Fluorescence sensing of a ribonucleoside 5′-triphosphate. Tetrahedron Lett 38(36):6323–6326

    CAS  Google Scholar 

  137. Kanekiyo Y, Naganawa R, Tao H (2004) Fluorescence detection of ATP based on the ATP-mediated aggregation of pyrene-appended boronic acid on a polycation. Chem Commun (8):1006–1007

    Google Scholar 

  138. Luvino D, Smietana M, Vasseur J-J (2006) Selective fluorescence-based detection of dihydrouridine with boronic acids. Tetrahedron Lett 47(52):9253–9256

    CAS  Google Scholar 

  139. Atilgan S, Akkaya EU (2004) A calixpyridinium-pyranine complex as a selective anion sensing assembly via the indicator displacement strategy. Tetrahedron Lett 45(50):9269–9271

    CAS  Google Scholar 

  140. Neelakandan PP, Hariharan M, Ramaiah D (2006) A supramolecular on-off-on fluorescence assay for selective recognition of GTP. J Am Chem Soc 128(35):11334–11335

    PubMed  CAS  Google Scholar 

  141. Elliott WH, Elliott DC (2005) Biochemistry and molecular biology. Oxford University Press, New York

    Google Scholar 

  142. Palacios MA, Nishiyabu R, Marquez M, Anzenbacher P (2007) Supramolecular chemistry approach to the design of a high-resolution sensor array for multianion detection in water. J Am Chem Soc 129(24):7538–7544

    PubMed  CAS  Google Scholar 

  143. Erion MD, Dang Q, Reddy MR, Kasibhatla SR, Huang J, Lipscomb WN, van Poelje PD (2007) Structure-guided design of amp mimics that inhibit fructose-1,6-bisphosphatase with high affinity and specificity. J Am Chem Soc 129(50):15480–15490

    PubMed  CAS  Google Scholar 

  144. Dang Q, Kasibhatla SR, Reddy KR, Jiang T, Reddy MR, Potter SC, Fujitaki JM, van Poelje PD, Huang J, Lipscomb WN, Erion MD (2007) Discovery of potent and specific fructose-1,6-bisphosphatase inhibitors and a series of orally-bioavailable phosphoramidase-sensitive prodrugs for the treatment of type 2 diabetes. J Am Chem Soc 129(50):15491–15502

    PubMed  CAS  Google Scholar 

  145. Davies G, Sinnott ML, Withers SG (1998) Glycosyl transfer. Compr Biol Catal 1:119–208

    Google Scholar 

  146. Kren V (2008) Glycoside vs. aglycon: the role of glycosidic residue in biological activity. In: Fraser-Reid B, Tatsuta K, Thiem J (eds) Glycoscience. Springer, Berlin, pp 2589–2644

    Google Scholar 

  147. Aharoni A, Thieme K, Chiu CPC, Buchini S, Lairson LL, Chen H, Strynadka NCJ, Wakarchuk WW, Withers SG (2006) High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat Meth 3(8):609–614

    CAS  Google Scholar 

  148. Hennig A, Bakirci H, Nau WM (2007) Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes. Nat Meth 4(8):629–632

    CAS  Google Scholar 

  149. Reymond J-L, Fluxa VS, Maillard N (2009) Enzyme assays. Chem Commun 1:34–46

    Google Scholar 

  150. López-Sánchez M, Ayora-Cañada MJ, Molina-Díaz A, Siam M, Huber W, Quintás G, Armenta S, Lendl B (2009) Determination of enzyme activity inhibition by FTIR spectroscopy on the example of fructose bisphosphatase. Anal Bioanal Chem 394:2137–2144

    PubMed  Google Scholar 

  151. Oberthür C, Graf H, Hamburger M (2004) The content of indigo precursors in Isatis tinctoria leaves – a comparative study of selected accessions and post-harvest treatments. Phytochemistry 65(24):3261–3268

    PubMed  Google Scholar 

  152. Li Y, Wang H, Lu L, Li Z, Xu X, Xiao M (2009) Purification and characterization of a novel β-galactosidase with transglycosylation activity from Bacillus megaterium 2-37-4-1. Appl Biochem Biotechnol 158:192–199

    PubMed  CAS  Google Scholar 

  153. Maeda T, Nishimura S (2008) FRET-based direct and continuous monitoring of human fucosyltransferases activity: an efficient synthesis of versatile GDP-L-Fucose derivatives from abundant D-galactose. Chem Eur J 14:478–487

    PubMed  CAS  Google Scholar 

  154. Murayama T, Tanabe T, Ikeda H, Ueno A (2006) Direct assay for [alpha]-amylase using fluorophore-modified cyclodextrins. Bioorg Med Chem 14(11):3691–3696

    PubMed  CAS  Google Scholar 

  155. Indurugalla D, Watson JN, Bennet AJ (2006) Natural sialoside analogues for the determination of enzymatic rate constants. Org Biomol Chem 4(24):4453–4459

    PubMed  CAS  Google Scholar 

  156. Mayer C, Jakeman DL, Mah M, Karjala G, Gal L, Warren RAJ, Withers SG (2001) Directed evolution of new glycosynthases from Agrobacterium [beta]-glucosidase: a general screen to detect enzymes for oligosaccharide synthesis. Chem Biol 8(5):437–443

    PubMed  CAS  Google Scholar 

  157. Vankayalapati H, Singh G (1999) Synthesis of fucosidase substrates using propane-1,3-diyl phosphate as the anomeric leaving group. Tetrahedron Lett 40(20):3925–3928

    CAS  Google Scholar 

  158. Dicioccio RA, Piskorz C, Salamida G, Barlow JJ, Matta KL (1981) Synthesis and use of p-nitrophenyl-2-O-(α-L-fucopyranosyl)-β-D-galactopyranoside for the rapid detection of substrate-specific α-L-fucosidases. Anal Biochem 111:176–183

    PubMed  CAS  Google Scholar 

  159. Persson M, Palcic MM (2008) A high-throughput pH indicator assay for screening glycosyltransferase saturation mutagenesis libraries. Anal Biochem 378(1):1–7

    PubMed  CAS  Google Scholar 

  160. Ben-David A, Shoham G, Shoham Y (2008) A universal screening assay for glycosynthases: directed evolution of glycosynthase XynB2(E335G) suggests a general path to enhance activity. Chem Biol 15(6):546–551

    PubMed  CAS  Google Scholar 

  161. Wongkongkatep J, Miyahara Y, Ojida A, Hamachi I (2006) Label-free, real-time glycosyltransferase assay based on a fluorescent artificial chemosensor. Angew Chem Int Ed 45(4):665–668

    CAS  Google Scholar 

  162. Csutora P, Karsai A, Nagy T, Vas B, Kovacs GL, Rideg O, Bogner P, Miseta A (2006) Lithium induces phosphoglucomutase activity in various tissues of rats and in bipolar patients. Int J Neuropsychopharmacol 9:613–619

    PubMed  CAS  Google Scholar 

  163. Csutora P, Strassz A, Boldizsar F, Nemeth P, Sipos K, Aiello DP, Bedwell DM, Miseta A (2005) Inhibition of phosphoglucomutase activity by lithium alters cellular calcium homeostasis and signaling in Saccharomyces cerevisiae. Am J Physiol Cell Physiol 289(1):C58–C67

    PubMed  CAS  Google Scholar 

  164. Rossolini GM, Mantengoli E (2005) Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect 11:17–32

    PubMed  CAS  Google Scholar 

  165. Naught LE, Tipton PA (2001) Kinetic mechanism and pH dependence of the kinetic parameters of pseudomonas aeruginosa phosphomannomutase/phosphoglucomutase. Arch Biochem Biophys 396:111–118

    PubMed  CAS  Google Scholar 

  166. Gao H, Leary JA (2004) Kinetic measurements of phosphoglucomutase by direct analysis of glucose-1-phosphate and glucose-6-phosphate using ion/molecule reactions and Fourier transform ion cyclotron resonance mass spectrometry. Anal Biochem 329(2):269–275

    PubMed  CAS  Google Scholar 

  167. Cui Y, Barford JP, Renneberg R (2006) Amperometric determination of phosphoglucomutase activity with a bienzyme screen-printed biosensor. Anal Biochem 354:162–164

    PubMed  CAS  Google Scholar 

  168. Nakata E, Wang H, Hamachi I (2008) Ratiometric fluorescent biosensor for real-time and label-free monitoring of fine saccharide metabolic pathways. Chem Bio Chem 9(1):25–28

    PubMed  CAS  Google Scholar 

  169. Mieyal J, Simon M, Abeles R (1972) Mechanism of action of sucrose phosphorylase: 3. The reaction with water and other alcohols. J Biol Chem 247(2):532–542

    PubMed  CAS  Google Scholar 

  170. Nomura K, Sugimoto K, Nishiura H, Ohdan K, Nishimura T, Hayashi H, Kuriki T (2008) Glucosylation of acetic acid by sucrose phosphorylase. Biosci Biotechnol Biochem 72(1):82–87

    PubMed  CAS  Google Scholar 

  171. Kwon T, Kim C, Lee J-H (2007) ransglucosylation of ascorbic acid to ascorbic acid 2-glucoside by a recombinant sucrose phosphorylase from Bifidobacterium longum. Biotechnol Lett 29(4):611–615

    PubMed  CAS  Google Scholar 

  172. Sugimoto K, Nomura K, Nishiura H, Ohdan K, Hayashi H, Kuriki T (2007) Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds such as benzoic acid. J Biosci Bioeng 104(1):22–29

    PubMed  CAS  Google Scholar 

  173. Shin M, Cheong N-Y, Lee J-H, Kim K (2009) Transglucosylation of caffeic acid by a recombinant sucrose phosphorylase in aqueous buffer and aqueous-supercritical CO2 media. Food Chem 115:1028–1033

    CAS  Google Scholar 

  174. Inoue H, Kondo S, Hinohara Y, Juni N, Yamamoto D (2003) Enhanced phosphorylation and enzymatic activity of phosphoglucomutase by the Btk29A tyrosine kinase in Drosophila. Arch Biochem Biophys 413:207–212

    PubMed  CAS  Google Scholar 

  175. Treptau T, Kissmehl R, Wissmann JD, Plattner H (1995) A 63 kDa phosphoprotein undergoing rapid dephosphorylation during exocytosis in Paramecium cells shares biochemical characteristics with phosphoglucomutase. Biochem J 309:557–567

    PubMed  CAS  Google Scholar 

  176. Goedl C, Schwarz A, Minani A, Nidetzky B (2007) Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: Characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of [alpha]-d-glucose 1-phosphate. J Biotechnol 129(1):77–86

    PubMed  CAS  Google Scholar 

  177. Galbán J, Andreu Y, Sierra JF, Marcos SD, Castillo JR (2001) Intrinsic fluorescence of enzymes and fluorescence of chemically modified enzymes for analytical purposes: a review. Luminescence 16(2):199–210

    PubMed  Google Scholar 

  178. Dowlut M, Hall DG (2006) An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J Am Chem Soc 128(13):4226–4227

    PubMed  CAS  Google Scholar 

  179. Yang W, Gao X, Wang B (2003) Boronic acid compounds as potential pharmaceutical agents. Med Res Rev 23(3):346–368

    PubMed  CAS  Google Scholar 

  180. Ray WJ, Szymanki ES, Ng L (1978) The binding of lithium and of anionic metabolites to phosphoglucomutase. Biochim Biophys Acta Enzymol 522(2):434–442

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schiller, A., Vilozny, B., Wessling, R.A., Singaram, B. (2011). Going Beyond Continuous Glucose Monitoring with Boronic Acid-Appended Bipyridinium Salts. In: Geddes, C. (eds) Reviews in Fluorescence 2009. Reviews in Fluorescence, vol 2009. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9672-5_7

Download citation

Publish with us

Policies and ethics