Skip to main content

Zinc in Stroke: Time for a New Approach?

  • Chapter
  • First Online:

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

For centuries, stroke has been a leading cause of morbidity and mortality, especially in developed countries. Substantial evidence supports the hypothesis that neural cell death occurring for days or weeks after the initial blockage or hemorrhage is the result of an excitotoxic cascade involving metal ions, especially calcium. Unfortunately, scores of drugs designed to interdict the cascade and shown to be neuroprotective in animal models have failed in human trials, suggesting our understanding is incomplete. Evidence is reviewed here that zinc is a potent toxin released from cellular sites during and after ischemia that can cripple the cell’s energy production and ability to defend itself from the well-known effects of oxidative stress. In particular, the protonation of histidinyl zinc ligands due to lactic acidosis and the oxidation of thiol ligands both can release bound intracellular zinc irrespective of any channel opening, and zinc has been shown to be a potent inhibitor of mitochondrial enzymes involved in energy production and the destruction of reactive oxygen species. There is disagreement as to whether elevated zinc ion levels induce apoptosis. These results suggest that zinc ion may play a substantial role in the toxic events following stroke, and may suggest alternative therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acworth IN (2003) Handbook of redox biochemistry. ESA, Inc., Chelmsford, MA

    Google Scholar 

  • Ahn Y-H, Kim Y-H, Hong S-H, Koh J-Y (1998) Depletion of intracellular zinc induces protein synthesis-dependent neuronal apoptosis in mouse cortical culture. Exp Neurol 154:47–56

    PubMed  CAS  Google Scholar 

  • Aiuchi T, Mihara S, Nakaya M, Masuda Y, Nakajo S, Nakaya K (1998) Zinc ions prevent processing of caspase-3 during apoptosis induced by geranylgeraniol in HL-60 cells. J Biochem 124:300–303

    PubMed  CAS  Google Scholar 

  • Aizenman E, Stout AK, Hartnett KA, Dinely KE, McLaughlin B, Reynolds IJ (2000) Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J Neurochem 75:1878–1889

    PubMed  CAS  Google Scholar 

  • Aras MA, Aizenman E (2011) Redox regulation of intracellular zinc: molecular signaling in the life and death of neurons. Antioxidants Redox Signal 15:2249–2263

    CAS  Google Scholar 

  • Arslan P, Di Virgilio F, Beltrame M, Tsien RY, Pozzan T (1985) Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J Biol Chem 260:2719–2727

    PubMed  CAS  Google Scholar 

  • Beers MH, Berkow R (eds) (1999) The Merck manual of diagnosis and therapy, 17th edn. Merck Research Laboratories, Whitehouse Station, NJ

    Google Scholar 

  • Bhatt A, Farooq MU, Enduri S, Pillainayagam C, Naravetla B, Razak A, Safdar A, Hussain S, Kassab M, Majid A (2010) Clinical significance of serum zinc levels in cerebral ischemia. Stroke Res Treat 2010:245715.

    Google Scholar 

  • Bogaert YE, Rosenthal RE, Fiskum G (1994) Postischemic inhibition of cerebral cortex pyruvate dehydrogenase. Free Radical Biol Med 16:811–820

    CAS  Google Scholar 

  • Bonnani L, Chachar M, Jover-Mengual T, Li H, Jones A, Yokota H, Ofengeim D, Flannery RJ, Miyawaki T, C-h C, Polster BM, Pypaert M, Hardwick JM, Seni SL, Zukin RS, Jonas EA (2006) Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain. J Neurosci 26:6851–6862

    Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    PubMed  CAS  Google Scholar 

  • Bozym R, Hurst TK, Westerberg N, Stoddard A, Fierke CA, Frederickson CJ, Thompson RB (2008) Determination of zinc using carbonic anhydrase-based fluorescence biosensors. In: Brand L, Johnson M (eds) Fluorescence spectroscopy. Academic, San Diego, pp 287–309

    Google Scholar 

  • Bozym RA, Thompson RB, Stoddard AK, Fierke CA (2006) Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor. ACS Chem Biol 1:103–111

    PubMed  CAS  Google Scholar 

  • Bozym RA, Chimienti F, Giblin LJ, Gross GW, Korichneva I, Li Y, Libert S, Maret W, Parviz M, Frederickson CJ, Thompson RB (2010) Free zinc outside a narrow concentration range is toxic to a variety of cells in vitro. Exp Biol Med 235:741–750

    CAS  Google Scholar 

  • Bush AI, Pettingell WH, Multhaup G, Md P, Vonsattel J-P, Gusella JF, Beyreuther K, Masters CL, Tanzi RE (1994) Rapid induction of Alzheimer AB amyloid formation by zinc. Science 265:1464–1467

    PubMed  CAS  Google Scholar 

  • Calderone A, Jover T, Mashiko T, K-m N, Tanaka H, Bennett MVL, Zukin RS (2004) Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death. J Neurosci 24:9903–9913

    PubMed  CAS  Google Scholar 

  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G––T and A––C substitutions. J Biol Chem 267:166–172

    PubMed  CAS  Google Scholar 

  • Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim YS, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters C, Bush AI (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676

    PubMed  CAS  Google Scholar 

  • Chimienti F, Seve M, Richard S, Mathieu J, Favier A (2001) Role of cellular zinc in programmed cell death: temporal relationship between zinc depletion, activation of caspases, and cleavage of Sp family transcription factors. Biochem Pharmacol 62:51–62

    PubMed  CAS  Google Scholar 

  • Choi DW, Koh JY (1998) Zinc and brain injury. Ann Rev Neurosci 21:347–375

    PubMed  CAS  Google Scholar 

  • Christianson DW (1991) Structural biology of zinc. Adv Protein Chem 42:281–355

    PubMed  CAS  Google Scholar 

  • Cole TB, Wenzel HJ, Kafer KA, Schwartzkroin PA, Palmiter RD (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci 96:1716–1721

    PubMed  CAS  Google Scholar 

  • Costello LC, Liu Y, Franklin RB, Kennedy MC (1997) Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J Biol Chem 272:28875–28881

    PubMed  CAS  Google Scholar 

  • Coulter DA (2000) Mossy fiber zinc and temporal lobe epilepsy: Pathological association with altered “epileptic” GABAa receptors in dentate granule cells. Epilepsia 41(Suppl 6):S96–S99

    PubMed  Google Scholar 

  • Diener H-C, Schneider D, Lampl Y, Bornstein NM, Kozak A, Rosenberg G, on Behalf of the Study G (2008) DP-b99, a membrane-activated metal ion chelator, as neuroprotective therapy in ischemic stroke. Stroke 39:1774–1778

    Google Scholar 

  • Dinely KE, Richards LL, Votyakova TV, Reynolds IJ (2005) Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5:55–65

    Google Scholar 

  • Dittmer PJ, Miranda JG, Gorski JA, Palmer AE (2009) Genetically encoded sensors to elucidate spatial distribution of cellular zinc. J Biol Chem 284:16289–16297

    PubMed  CAS  Google Scholar 

  • Dongen EMWMV, Evers TH, Dekkers LM, Meijer EW, Klomp LWJ, Merkx M (2007) Variation of linker length in ratiometric fluorescent sensor proteins allows rational tuning of Zn(II) affinity in the picomolar to femtomolar range. J Am Chem Soc 129:3494–3495

    PubMed  Google Scholar 

  • Elsas S-M, Hazany S, Gregory WL, Mody I (2008) Hippocampal zinc infusion delays the development of after discharges and seizures in a kindling model of epilepsy. Epilepsy 49:1–10

    Google Scholar 

  • Feng P, Li T-L, Guan Z-X, Franklin RB, Costello LC (2002) Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate 52:311–318

    PubMed  CAS  Google Scholar 

  • Fenton HJH (1894) Oxidation of tartaric acid in the presence of iron. J Chem Soc 65:899–910

    CAS  Google Scholar 

  • Fiskum G, Murphy AN, Beal MF (1999) Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cerebral Blood Flow Metab 19:351–369

    CAS  Google Scholar 

  • Fiskum G, Rosenthal RE, Vereczki V, Martin E, Hoffman GE, Chinopoulos C, Kowaltowski A (2004) Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress. J Bioenerg Biomembr 36:347–352

    PubMed  CAS  Google Scholar 

  • Frazzini V, Rockabrand E, Mocchegiani E, Sensi S (2006) Oxidative stress and brain aging: is zinc the link? Biogerontology 7:307–314

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Maret W, Cuajungco MP (2004) Zinc and excitotoxic brain injury: a new model. Neuroscientist 10:18–25

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Koh J-Y, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Klitenick MA, Manton WI, Kirkpatrick JB (1983) Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat. Brain Res 273:335–339

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Kasarskis EJ, Ringo D, Frederickson RE (1987) A quinoline fluorescence method for visualizing and assaying histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods 20:91–103

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Suh SW, Koh J-Y, Cha YK, Thompson RB, LaBuda CJ, Balaji RV, Cuajungco MP (2002) Depletion of intracellular zinc from neurons by use of an extracellular chelator in vivo and in vitro. J Histochem Cytochem 50:1659–1662

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Muelle RN, Zeng Y, Balaji RV, Masalha R, Thompson RB, Fierke CA, Sarvey JM, Md V, Prough DS, Zornow MH (2006) Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia, and reperfusion. Exp Neurol 198:285–293

    PubMed  CAS  Google Scholar 

  • Gaber BP, Fluharty AL (1972) Cadmium and arsenite binding by N-dihydrolipoylaminoethoxydextran: a model study of enzyme dithiol criteria. Bioinorg Chem 2:135–148

    Google Scholar 

  • Galasso SL, Dyck RH (2007) The role of zinc in cerebral ischemia. Mol Med 13:380–387

    PubMed  CAS  Google Scholar 

  • Gazaryan I, Krasnikov BF, Ashby GA, Thorneley RNF, Kristal BS, Brown AM (2002) Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J Biol Chem 277:10064–10072

    PubMed  CAS  Google Scholar 

  • Gazaryan IG, Krasinskaya IP, Kristal BS, Brown AM (2007) Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition. J Biol Chem 282:24373–24380

    PubMed  CAS  Google Scholar 

  • Ginsberg MD (2009) Current status of neuroprotection for cerebral ischemia. Stroke 40:S111–S114

    PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of calcium indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. FEBS Lett 307:108–112

    PubMed  CAS  Google Scholar 

  • Haugland RP (2005) The handbook: a guide to fluorescent probes and labeling technologies, 10th edn. Invitrogen Corp, Carlsbad, CA

    Google Scholar 

  • Jiang D, Sullivan PG, Sensi SL, Steward O, Weiss JH (2001) Zn2+ induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J Biol Chem 276:47524–47529

    PubMed  CAS  Google Scholar 

  • Kitamura Y, Iida Y, Abe J, Mifune M, Kasuya F, Ohta M, Igarashi K, Saito Y, Saji H (2006a) Release of vesicular Zn2+ in a rat transient middle cerebral artery occlusion model. Brain Res Bull 69:622

    PubMed  CAS  Google Scholar 

  • Kitamura Y, Iida Y, Abe J, Ueda M, Mifune M, Kasuya F, Ohta M, Igarashi K, Saito Y, Saji H (2006b) Protective effect of zinc against ischemic neuronal injury in a middle cerebral artery occlusion model. J Pharmacol Sci 100:142–148

    PubMed  CAS  Google Scholar 

  • Krezel A, Maret W (2006) Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem 11:1049–1062

    PubMed  CAS  Google Scholar 

  • Krezel A, Maret W (2008) Thionein/metallothionein control Zn(II) availability and the activity of enzymes. J Biol Inorg Chem 13:401–409

    PubMed  CAS  Google Scholar 

  • Kroncke K-D, Klotz L-O (2009) Zinc fingers as biological redox switches. Antioxidants Redox Signal 11:1015–1027

    Google Scholar 

  • Kumar S (ed) (1998) Apoptosis: mechanisms and role in disease. Springer-Verlag, Berlin

    Google Scholar 

  • Kumar S (ed) (1999) Apoptosis: biology and mechanisms. Springer-Verlag, Berlin

    Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    PubMed  CAS  Google Scholar 

  • Lindskog S, Henderson LE, Kannan KK, Liljas A, Nyman PO, Strandberg B (1971) Carbonic anhydrase. In: Boyer PD (ed) The enzymes. Academic, New York, pp 587–665

    Google Scholar 

  • Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80:780–787

    PubMed  CAS  Google Scholar 

  • Liu Y, Rosenthal RE, Haywood Y, Miljkovic-Lolic M, Vanderhoek JY, Fiskum G (1998) Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke 29:1679–1686

    PubMed  CAS  Google Scholar 

  • Lo EH, Dalkara T, Moskowitz MW (2003) Mechanisms, challenges, and opportunities in stroke. Nat Rev Neurosci 4:399–414

    PubMed  CAS  Google Scholar 

  • Loh SN (2010) The missing zinc: p53 misfolding and cancer. Metallomics 2:442–449

    PubMed  CAS  Google Scholar 

  • Manev H, Kharlamov E, Uz T, Mason RP, Cagnoli CM (1997) Characterization of zinc-induced neuronal death in primary cultures of rat cerebellar granule cells. Exp Neurol 146:171–178

    PubMed  CAS  Google Scholar 

  • Maret W (1994) Oxidative metal release from metallothionein via zinc-thiol/disulfide interchange. Proc Natl Acad Sci 91:237–241

    PubMed  CAS  Google Scholar 

  • Maret W (2008) Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp Gerontol 43:363–369

    PubMed  CAS  Google Scholar 

  • Maret W, Jacob C, Vallee BL, Fischer EH (1999) Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc Natl Acad Sci 96:1936–1940

    PubMed  CAS  Google Scholar 

  • Martin JL, Stork CJ, Li YV (2006) Determining zinc with commonly used calcium and zinc fluorescent indicators, a question on calcium signals. Cell Calcium 40:393–402

    PubMed  CAS  Google Scholar 

  • Maske H (1955) Uber den topochemischen Nachweir von Zink im Ammonshorn verschiedener Säugetiere. Die Naturwissenschaften 42:424

    CAS  Google Scholar 

  • McCabe MJ, Jiang SA, Orrenius S (1993) Chelation of Intracellular zinc triggers apoptosis in mature thymocytes. Lab Investig 69:101–110

    PubMed  CAS  Google Scholar 

  • McCranor BM, Bozym RA, Vitolo MI, Fierke CA, Bambrick L, Polster BM, Fiskum G, Thompson RB (2012) Quantitative imaging of mitochondrial and cytosolic free zinc levels in an in vitro model of ischemia/reperfusion. J Bioenerg Biomembr in the press

    Google Scholar 

  • Medvedeva YV, Lin B, Shuttleworth CW, Weiss JH (2009) Intracellular Zn2+ accumulation contributes to synaptic failure, mitochondrial depolarization, and cell death in an acute slice oxygen glucose deprivation model of ischemia. J Neurosci 29:1105–1114

    PubMed  CAS  Google Scholar 

  • Mik EG, Johannes T, Zuurbier CJ, Heinen A, Houben-Weerts JHPM, Balestra GM, Stap J, Beek JF, Ince C (2008) In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophys J 95:3977

    PubMed  CAS  Google Scholar 

  • Mohr JP, Choi DW, Grotta JC, Weir B, Wolf PA (eds) (2004) Stroke: pathophysiology, diagnosis and management, 4th edn. Churchill Livingstone, Philadelphia

    Google Scholar 

  • Mott DD, Benveniste M, Dingledine RJ (2008) pH-dependent inhibition of kainate receptors by zinc. J Neurosci 28:1659–1671

    PubMed  CAS  Google Scholar 

  • Paoletti P, Ascher P, Neyton J (1997) High-affinity zinc inhibition of NMDA NR1 -NR2A receptors. J Neurosci 17:5711–5725

    PubMed  CAS  Google Scholar 

  • Perry DK, Smyth MJ, Stennicke HR, Salvesen GS, Duriez P, Poirier GG, Hannun YA (1997) Zinc is a potent inhibitor of the apoptotic protease, caspase-3. J Biol Chem 272:18530–18533

    PubMed  CAS  Google Scholar 

  • Qin Y, Dittmer PJ, Park JG, Jansen KB, Palmer AE (2011) Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proc Natl Acad Sci U S A 109:2012

    Google Scholar 

  • Richards EM, Rosenthal RE, Kristian T, Fiskum G (2006) Postischemic hyperoxia reduces hippocampal pyruvate dehydrogenase activity. Free Radical Biol Med 40:1960

    CAS  Google Scholar 

  • Ritchie CW, Bush AI, MacKinnon A, MacFarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Q-x L, Tammer A, Carrington D, Mavros C, Volitakis I, Xilinas M, Ames D, Davis S, Beyreuther K, Tanzi RE, Masters CL (2003) Metal-protein attenuation with Iodochlorhydroxyquin (Clioquinol) targeting A-beta amyloid deposition and toxicity in Alzheimer disease. Arch Neuorol 60:1685–1691

    Google Scholar 

  • Rosenberg G, Bornstein N, Diener H-C, Gorelick PB, Shuaib A, Lees K (2011) The Membrne-Activated Chelator Stroke Intervention (MACSI) trial of DP-b99 in acute ischemic stroke: a randomized, double-blind, placebo-controlled, multinational pivotal Phase III study. Int J Stroke 6:362–367

    PubMed  Google Scholar 

  • Rudolf E, Rudolf K, Cervinka M (2005) Zinc induced apoptosis in HEP-2 cancer cells: the role of oxidative stress and mitochondria. BioFactors 23:107–120

    PubMed  CAS  Google Scholar 

  • Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10:780

    PubMed  CAS  Google Scholar 

  • Sensi SL, Ton-That D, Weiss JH, Rothe A, Gee KR (2003) A new mitochondrial fluorescent zinc sensor. Cell Calcium 34:281–284

    PubMed  CAS  Google Scholar 

  • Shabanzadeh AP, Shuaib A, Yang T, Salam A, Wang CX (2004) Effect of zinc in ischemic brain injury in an embolic model of stroke in rats. Neurosci Lett 356:369

    Google Scholar 

  • Sheline CT, Behrens MM, Choi DW (2000) Zinc-induced cortical neuronal death: Contribution of energy failure attributable to loss of NAD and inhibition of glycolysis. J Neuorsci 20:3139–3146

    CAS  Google Scholar 

  • Shuttleworth CW, Weiss JH (2011) Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol Sci 32:480

    PubMed  CAS  Google Scholar 

  • Sindreu C, Palmiter RD, Storm DR (2011) Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory. Proc Natl Acad Sci 108:3366–3370

    PubMed  CAS  Google Scholar 

  • Soane L, Polster BM, Fiskum G (2010) Mitochondrial mechanisms of neural cell death in cerebral ischemia. In: Reed JC, Green D (eds) Apoptosis: physiology and pathology of cell death. Cambridge University Press, Cambridge

    Google Scholar 

  • Solenski NJ, Rosenthal RE, Fiskum G (2006) Ischemic brain injury. In: Hemmings HC, Hopkins PM (eds) Foundations of anesthesia, 2nd edn. Elsevier, New York

    Google Scholar 

  • Sorensen J, Mattson B, Andreasen A, Johansson B (1998) Rapid disappearance of zinc positive terminals in focal brain ischemia. Brain Res 812:265–269

    PubMed  CAS  Google Scholar 

  • Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004) Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24:7779–7788

    PubMed  CAS  Google Scholar 

  • Stork CJ, Li YV (2006) Intracellular zinc elevation measured with a “calcium-specific” indicator during ischemia and reperfusion in rat hippocampus: a question on calcium overload. J Neurosci 26:10430–10437

    PubMed  CAS  Google Scholar 

  • Stork CJ, Li YV (2009) Rising zinc: a significant cause of ischemic neuronal death in the CA1 region of rat hippocampus. J Cerebral Blood Flow Metab 29:1399–1408

    CAS  Google Scholar 

  • Suh SW, Thompson RB, Frederickson CJ (2001) Loss of vesicular zinc and appearance of perikaryal zinc after seizures induced by pilocarpine. Neuroreport 12:1523–1525

    PubMed  CAS  Google Scholar 

  • Suh SW, Chen JW, Motamedi M, Bell B, Listiak K, Pons NF, Danscher G, Frederickson CJ (1999) Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res 852:268–273

    Google Scholar 

  • Telford W, Fraker PJ (1995) Preferential induction of apoptosis in mouse CD4  +  CD8+ alpha betaTCR10CD3e thymocytes by zinc. J Cell Physiol 164:259–270

    PubMed  CAS  Google Scholar 

  • Thompson RB, Peterson D, Mahoney W, Cramer M, Maliwal BP, Suh SW, Frederickson CJ (2002) Fluorescent zinc indicators for neurobiology. J Neurosci Methods 118:63–75

    PubMed  CAS  Google Scholar 

  • Tonder N, Johansen FF, Frederickson CJ, Zimmer J, Diemer NH (1990) Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci Lett 109:247–252

    PubMed  CAS  Google Scholar 

  • Turan B, Fliss H, Desilets M (1997) Oxidants increase intracellular free Zn2+ concentration in rabbit ventricular myocytes. Am J Physiol Heart Circul Physiol 272:H2095–H2106

    CAS  Google Scholar 

  • Vereczki V, Martin E, Rosenthal RE, Hof PR, Hoffman GE, Fiskum G (2006) Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death. J Cerebral Blood Flow Metab 26:821–835

    CAS  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    PubMed  CAS  Google Scholar 

  • Wei G, Hough CJ, Li Y, Sarvey JM (2004) Characterization of extracellular accumulation of Zn2+ during ischemia and reperfusion of hippocampus slices in rat. Neuroscience 125:867–877

    PubMed  CAS  Google Scholar 

  • Weiss JH, Sensi SL, Koh J-Y (2000) Zn(II): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21:395–401

    PubMed  CAS  Google Scholar 

  • Whibley C, Pharoah PDP, Hollstein M (2009) p53 polymorphisms: cancer implications. Nat Rev Cancer 9:95–107

    PubMed  CAS  Google Scholar 

  • Wilson DF, Rumsey WL, Green TJ, Vanderkooi JM (1988) The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J Biol Chem 263:2712–2718

    PubMed  CAS  Google Scholar 

  • Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278

    PubMed  CAS  Google Scholar 

  • Yin HZ, Sensi SL, Ogoshi F, Weiss JH (2002) Blockade of Ca2  +  -permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn2+ accumulation and neuronal loss in hippocampal pyramidal neurons. J Neurosci 22:1273–1279

    PubMed  CAS  Google Scholar 

  • Yokoyama M, Koh J, Choi DW (1986) Brief exposure to zinc is toxic to cortical neurons. Neurosci Lett 71:351–355

    PubMed  CAS  Google Scholar 

  • Zalewski P, Forbes IJ, Giannakis C (1991) Physiological role for zinc in prevention of apoptosis (gene-directed death). Biochem Int 24:1093–1101

    PubMed  CAS  Google Scholar 

  • Zalewski PD, Forbes IJ, Betts WH (1993) Correlation of apoptosis with change in intracellular labile Zn(II) using Zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem J 296:403–408

    PubMed  CAS  Google Scholar 

  • Zeng H-H, Bozym RA, Rosenthal RE, Fiskum G, Cotto-Cumba C, Westerberg N, Fierke CA, Stoddard A, Cramer ML, Frederickson CJ, Thompson RB (2005) In situ measurement of free zinc in an ischemia model and cell culture using a ratiometric fluorescence-based biosensor. In: Vo-Dinh T, Grundfest WS, Benaron DA, Cohn GE (eds) SPIE conference on advanced biomedical and clinical diagnostic systems III. SPIE, San Jose, CA, pp 51–59

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Gary Fiskum, Chris Frederickson, and Abraham Brown for fruitful discussions, and the National Institutes of Health (RO1 EB03924) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Thompson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thompson, R.B. (2012). Zinc in Stroke: Time for a New Approach?. In: Li, Y., Zhang, J. (eds) Metal Ion in Stroke. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9663-3_9

Download citation

Publish with us

Policies and ethics