Skip to main content

Role of a Changing Membrane Potential (Em) and Matching Blood Flow with Neuronal Activity

  • Chapter
  • First Online:
Book cover Metal Ion in Stroke

Abstract

It is crucial that blood flow is matched to metabolic activity in the brain. This matching of flow to metabolism is an absolute requirement for survival in that oxygen and glucose are the primary substrates for neuronal tissue; blood is the only source for these nutrients and matching of flow to metabolic activity dictates normal physiologic regulation of brain activity. Blood flow is regulated by changes in vascular diameter which is controlled by the activation state of vascular muscle. The activation of vascular muscle is under the control of membrane potential with fine adjustments made in response to metabolites of neuronal and astrocytic environmental influences. Astrocytes sense neuronal activity, and are intimately involved in the matching of flow by sensing changes in the metabolic state of neurons. This mechanism involves release of dilators at gap junctions of astrocytic foot processes. This chapter focuses on the mechanisms responsible for local control of cerebral blood flow via changes in membrane potential in astrocytes, neurons, and vascular muscle. These cell types form the neurovascular unit and are under the control of local environmental influences, such as H+, K+, oxygen, and CO2 and other factors defined within this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albuquerque LMC, Leffler CW (1998) pHo, pHi, and PCO2 in stimulation of IP3 and [Ca2+]c in piglet cerebrovascular smooth muscle. Proc Soc Exp Biol Med 219:226–234

    PubMed  CAS  Google Scholar 

  • Barlow RS, White RE (1998) Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity. Am J Physiol 275(4 Pt 2):H1283–H1289

    PubMed  CAS  Google Scholar 

  • Barlow RS, El-Mowafy AM, White RE (2000) H(2)O(2) opens BK(Ca) channels via the PLA(2)-arachidonic acid signaling cascade in coronary artery smooth muscle. Am J Physiol Heart Circ Physiol 279(2):H475–H483

    PubMed  CAS  Google Scholar 

  • Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113

    Article  PubMed  CAS  Google Scholar 

  • Benarroch EE (2005) Neuron–astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 80(10):1326–1338

    Article  PubMed  CAS  Google Scholar 

  • Boegehold MA, Johnson PC (1988) Periarteriolar and tissue PO2 during sympathetic escape in skeletal muscle. Am J Physiol Heart Circ Physiol 254:H929–H993

    CAS  Google Scholar 

  • Bolotina VM, Najibi S, Palacino JJ et al (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368(6474):850–853

    Article  PubMed  CAS  Google Scholar 

  • Bonnet P, Rush NJ, Harder DR (1991) Characterization of an outward K+ current in freshly dispersed cerebral arterial muscle cells. Pflugers Arch 418:292–296

    Article  PubMed  CAS  Google Scholar 

  • Brayden JE, Nelson MT (1992) Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256(5056):532–535

    Article  PubMed  CAS  Google Scholar 

  • Chang AE, Detar R (1980) Oxygen and vascular smooth muscle contraction revisited. Am J Physiol Heart Circ Physiol 238:H716–H728

    CAS  Google Scholar 

  • Clapham DE (2002) Sorting out MIC, TRP, and CRAC ion channels. J Gen Physiol 120(2):217–220

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE, Runnels LW, Strubing C (2001) The TRP ion channel family. Nat Rev Neurosci 2:387–396

    Article  PubMed  CAS  Google Scholar 

  • Colton CA, Jia M, Li MX et al (1994) K+ modulation of microglial superoxide production: involvement of voltage-gated Ca2+ channels. Am J Physiol 266(6 Pt 1):C1650–C1655

    PubMed  CAS  Google Scholar 

  • Cosentino F, Luscher TF (1998) Tetrahydrobiopterin and endothelial function. Eur Heart J 19(Suppl G):G3–G8

    PubMed  CAS  Google Scholar 

  • Faraci FM (2006) Reactive oxygen species: influence on cerebral vascular tone. J Appl Physiol 100:739–743

    Article  PubMed  CAS  Google Scholar 

  • Farley J, Rudy B (1988) Multiple type of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membrane. Biophys J 53:919–934

    Article  PubMed  CAS  Google Scholar 

  • Fleming I (2001) Cytochrome P450 and vascular homeostasis. Circ Res 89:753–762

    Article  PubMed  CAS  Google Scholar 

  • Gebremedhin D, Yamaura K, Zhang C, Bylund J, Koehler RC, Harder DR (2003) Metabotropic glutamate receptor activation enhances the activities of two types of Ca2−-activated K-channels in rat hippocampal astrocytes. J Neurosci 23:1678–1687

    PubMed  CAS  Google Scholar 

  • Gebremedhin D, Yamaura K, Harder DR (2008) Role of 20-HETE in the hypoxia-induced activation of Ca2+-activated K+ channel currents in rat cerebral arterial muscle cells. Am J Physiol Heart Circ Physiol 294(1):H107–H120

    Article  PubMed  CAS  Google Scholar 

  • Ghatta S, Nimmagadda D, Xu X, O’Rourke ST (2006) Large-conductance, calcium-activated potassium channels: Structural and functional implications. Pharmacol Ther 110(1):103–116

    Article  PubMed  CAS  Google Scholar 

  • Goncharova EA, Ammit AJ, Irani C et al (2002) PI3K is required for proliferation and migration of human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 283(2):L354–L363

    PubMed  CAS  Google Scholar 

  • Gorlach A, Brandes RP, Nguyen K et al (2000) A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res 87(1):26–32

    Article  PubMed  CAS  Google Scholar 

  • Graier WF, Hoebel BG, Paltauf-Doburzynska J et al (1998) Effects of superoxide anions on endothelial Ca2+ signaling pathways. Arterioscler Thromb Vasc Biol 18(9):1470–1479

    Article  PubMed  CAS  Google Scholar 

  • Gribkoff VK, Starrett JE Jr, Dworetzky SI (2001) Maxi-K potassium channels: form, function, and modulation of a class of endogenous regulators of intracellular calcium. Neuroscientist 7(2):166–177

    Article  PubMed  CAS  Google Scholar 

  • Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86(5):494–501

    Article  PubMed  CAS  Google Scholar 

  • Hamel E (2006) Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol 100:1059–1064

    Article  PubMed  Google Scholar 

  • Harder DR (1984) Pressure-dependent membrane depolarization in cat middle cerebral artery. Circ Res 55(2):197–202

    Article  PubMed  CAS  Google Scholar 

  • Harder DR (1985) A cellular mechanism for myogenic regulation of cat cerebral arteries. Ann Biomed Eng 13:335–339

    Article  PubMed  CAS  Google Scholar 

  • Harder DR, Waters A (1983) Electromechanical coupling in feline basilar artery in response to serotonin. Eur J Pharmacol 93(1-2):95–100

    Article  PubMed  CAS  Google Scholar 

  • Harder DR, Madden JA (1984) Cellular mechanisms of opiate receptor stimulation in cat middle cerebral artery. Eur J Pharmacol 102(3):411–416

    Article  PubMed  CAS  Google Scholar 

  • Harder DR, Madden JA (1985) Cellular mechanism of force development in cat middle cerebral artery by reduced PCO2. Pflügers Arch Eur J Physiol 403(4):402–406

    Article  CAS  Google Scholar 

  • Harder DR, Madden JA (1986) Membrane ionic mechanisms controlling activation of cerebral arterial muscle. In: Owman C, Hardebo JE (eds) Neural regulation of brain circulation. Elsevier Science Publishers, B. V., Amsterdam, pp 82–91

    Google Scholar 

  • Harder DR, Gilbert R, Lombard JH (1987) Vascular muscle cell depolarization and activation in renal arteries on elevation of transmural pressure. Am J Physiol 253:F778–F781

    PubMed  CAS  Google Scholar 

  • Harder DR, Kauser K, Roman RJ, Lombard JH (1989) Mechanisms of pressure-induced myogenic activation of cerebral and renal arteries: role of the endothelium. J Hypertens Suppl 7:S11–S15

    PubMed  CAS  Google Scholar 

  • Harder DR, Zhang C, Gebremedhin D (2002a) Astrocytes function in matching blood flow to metabolic activity. News Physiol Sci 17(1):27–31

    PubMed  CAS  Google Scholar 

  • Harder DR, Zhang C, Gebremedhin D (2002b) Astrocytes function in matching blood flow to metabolic activity. News Physiol Sci 16:23–31

    Google Scholar 

  • Harder DR, Narayanan J, Gebremedhin D (2011) Pressure-induced myogenic tone and role of 20-HETE in mediating autoregulation of cerebral blood flow. Am J Physiol Heart Circ Physiol 300:H1557–H1565

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC (2003) TRP channels in Drosophila photoreceptors: the lipid connection. Cell Calcium 33:385–393

    Article  PubMed  CAS  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    Article  PubMed  CAS  Google Scholar 

  • Hermsmeyer K (1976) Electrogenesis of increased norepinephrine sensitivity of arterial vascular wmuscle in hypertension. Circ Res 38:362–367

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo C, Donoso P (2008) Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid Redox Signal 10(7):1275–1312

    Article  PubMed  CAS  Google Scholar 

  • Holthoff K, Witte OW (2000) Directed spatial potassium redistribution in rat neocortex. Glia 29:288–292

    Article  PubMed  CAS  Google Scholar 

  • Innocenti M, Frittoli E, Ponzanelli I et al (2003) Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J Cell Biol 160(1):17–23

    Article  PubMed  CAS  Google Scholar 

  • Irani K (2000) Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res 87(3):179–183

    Article  PubMed  CAS  Google Scholar 

  • Jan L, Jan Y (1997) Voltage-gated and inwardly rectifying potassium channels. J Physiol 505:267–282

    Article  PubMed  CAS  Google Scholar 

  • Jiang JG, Chen CL, Card JW et al (2005) Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res 65(11):4707–4715

    Article  PubMed  CAS  Google Scholar 

  • Kader KN, Coyle CH (2007) Reactive oxygen and nitrogen species: implications for cardiovascular device engineering. J Biomed Mater Res B Appl Biomater 83:138–144

    PubMed  Google Scholar 

  • Kimelberg HK, Nedergaard M (2010) Functions of astrocytes and their potential as therapeutic targets. Neurother J Am Soc Exp NeuroTher 7:338–353

    Article  CAS  Google Scholar 

  • Kizub IV, Pavlova OO, Sahach VF, Solovĭov AI (2002) Current concepts on the mechanisms of hypoxic effects on vascular tonus. Fiziol Zh 48:112–122

    PubMed  CAS  Google Scholar 

  • Knot HJ, Nelson MT (1995) Regulation of membrane potential and diameter by voltage-dependent K+ channels in rabbit myogenic cerebral arteries. Am J Physiol 269:H348–H355

    PubMed  CAS  Google Scholar 

  • Koehler RC, Gebremedhin D, Harder DR (2006) Role of astrocytes in cerebrovascular regulation. J Appl Physiol 100:307–317

    Article  PubMed  CAS  Google Scholar 

  • Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Kojda G, Harrison D (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43(3):562–571

    Article  PubMed  CAS  Google Scholar 

  • Kudin AP, Bimpong-Buta NY, Vielhaber S et al (2004) Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem 279(6):4127–4135

    Article  PubMed  CAS  Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29(4):768–787

    PubMed  CAS  Google Scholar 

  • Lange A, Gebremedhin D, Narayanan J, Harder DR (1997) 20-Hydroxyeicosatetraenoic acid-induced vasoconstriction and inhibition of potassium current in cerebral vascular smooth muscle is dependent on activation of protein kinase C. J Biol Chem 272:27345–27352

    Article  PubMed  CAS  Google Scholar 

  • Lecrux C, Toussay X, Kocharyan A et al (2011) Pyramidal neurons are “neurogenic hubs” in the mneurovascular coupling response to whisker stimulation. J Neurosci 31(27):9836–9847

    Google Scholar 

  • Lee SR, Yang KS, Kwon J et al (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277(23):20336–20342

    Article  PubMed  CAS  Google Scholar 

  • Lin MI, Fulton D, Babbitt R et al (2003) Phosphorylation of threonine 497 in endothelial nitric-oxide synthase coordinates the coupling of l-arginine metabolism to efficient nitric oxide production. J Biol Chem 278(45):44719–44726

    Article  PubMed  CAS  Google Scholar 

  • Lombard JH, Smeda J, Madden JA, Harder DR (1986) Effect of reduced oxygen availability upon myogenic depolarization and contraction of cat middle cerebral artery. Circ Res 58(4):565–569

    Article  PubMed  CAS  Google Scholar 

  • López-Barneo J (1996) Oxygen-sensing by ion channels and the regulation of cellular functions. Trends Neurosci 19(10):435–440

    PubMed  Google Scholar 

  • Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Phil Trans R Soc Lond B Biol Sci 354(1387):1155–1163 (Review)

    Google Scholar 

  • Medhora M, Daniels J, Mundey K et al (2003) Epoxygenase-driven angiogenesis in human lung microvascular endothelial cells. Am J Physiol Heart Circ Physiol 284(1):H215–H224

    PubMed  CAS  Google Scholar 

  • Meera V, Pal H, Sing R (2001) Discriminative value of lipids and apolipoproteins in alcoholics. Prog Neuropsychopharmacol Biol Psychiatry 25(5):1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Michaelis UR, Fisslthaler B, Medhora M et al (2003) Cytochrome P450 2C9-derived epoxyeicosatrienoic acids induce angiogenesis via cross-talk with the epidermal growth factor receptor (EGFR). FASEB J 17(6):770–772

    PubMed  CAS  Google Scholar 

  • Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472

    PubMed  CAS  Google Scholar 

  • Mougenot N, Lesnik P, Ramirez-Gil JF, Nataf P, Diczfalusy U, Chapman MJ, Lechat P (1997) Effect of the oxidation state of LDL on the modulation of arterial vasomotor response in vitro. Atherosclerosis 133:183–192

    Article  PubMed  CAS  Google Scholar 

  • Mourani PM, Garl PJ, Wenzlau JM et al (2004) Unique, highly proliferative growth phenotype expressed by embryonic and neointimal smooth muscle cells is driven by constitutive Akt, mTOR, and p70S6K signaling and is actively repressed by PTEN. Circulation 109(10):1299–1306

    Article  PubMed  CAS  Google Scholar 

  • Munzenmaier DH, Harder DR (2000) Cerebral microvascular endothelial cell tube formation: role of astrocytic epoxyeicosatrienoic acid release. Am J Physiol Heart Circ Physiol 278:H1163–H1167

    PubMed  CAS  Google Scholar 

  • Narayanan J, Imig M, Roman RJ, Harder DR (1994) Pressurization of isolated renal arteries increases inositol trisphosphate and diacylglycerol. Am J Physiol 266(5 Pt 2):H1840–H1845

    PubMed  CAS  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530

    Article  PubMed  CAS  Google Scholar 

  • Nelson MT (1993) Ca2+-activated potassium channels and ATP-sensitive potassium channels as modulators of vascular tone. Trends Cardiovasc Med 3(2):54–60

    Article  PubMed  CAS  Google Scholar 

  • Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268(4 Pt 1):C799–C822

    PubMed  CAS  Google Scholar 

  • Nilius B (2003) From TRPs to SOCs, CCEs, and CRACs: consensus and controversies. Cell Calcium 33:293–298

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161

    PubMed  CAS  Google Scholar 

  • Peterson EC, Wang Z, Gavin Britz G (2011) Regulation of cerebral blood flow. Int J Vasc Med. doi:10.1155/2011/823525

    Google Scholar 

  • Pieroa P, Alexandreb M (2004) ATP-dependent potassium channels as a key target for the treatment of myocardial and vascular dysfunction. Curr Opin Crit Care 10:436–441

    Article  Google Scholar 

  • Rubin MJ, Bohlen HG (1985) Cerebral vascular autoregulation of blood flow and tissue PO2 in diabetic rats. Am J Physiol Heart Circ Physiol 249:H540–H546

    CAS  Google Scholar 

  • Sakai H, Takeguchi N (1994) A GTP-binding protein inhibits a gastric housekeeping chloride channel via intracellular production of superoxide. J Biol Chem 269(38):23426–23430

    PubMed  CAS  Google Scholar 

  • Smeda JS, Lombard JH, Madden JA, Harder DR (1987) The effect of alkaline pH and transmural pressure on arterial constriction and membrane potential of hypertensive cerebral arteries. Pflugers Arch 408(3):239–242

    Article  PubMed  CAS  Google Scholar 

  • Stocker R, Keaney JF Jr (2005) New insights on oxidative stress in the artery wall. J Thromb Haemost 3(8):1825–1834

    Article  PubMed  CAS  Google Scholar 

  • Trebak M, Ginnan R, Singer HA, Jourd’heuil D (2010) Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling. Antioxid Redox Signal 12(5):657–674

    Article  PubMed  CAS  Google Scholar 

  • Urakami-Harasawa L, Shimokawa H, Nakashima M et al (1997) Importance of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest 100(11):2793–2799

    Article  PubMed  CAS  Google Scholar 

  • Vacher H, Mohapatra DP, Trimmer JS (2008) Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 88:1407–1447

    Article  PubMed  CAS  Google Scholar 

  • Webb CR, Bohr DF (1981) Regulation of vascular tone, molecular mechanisms. Progress Cardiovasc Dis XXIV(3):961–968

    Google Scholar 

  • Wray S, Smith RD (2004) Mechanisms of action of pH-induced effects on vascular smooth muscle. Mol Cell Biochem 263(1):163–172

    Article  PubMed  CAS  Google Scholar 

  • Yamaura K, Gebremedhin D, Zhang C, Narayanan J, Hoefert K, Jacobs ER, Koehler RC, Harder DR (2006) Contribution of epoxyeicosatrienoic acids to the hypoxia-induced activation of Ca2+ activated K+ channel current in cultured rat hippocampal astrocytes. Neuroscience 143(3):703–716

    Article  PubMed  CAS  Google Scholar 

  • Zafari AM, Ushio-Fukai M, Akers M et al (1998) Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 32(3):488–495

    Article  PubMed  CAS  Google Scholar 

  • Zagorac D, Yamaura K, Zhang C et al (2005) The effect of superoxide anion on autoregulation of cerebral blood flow. Stroke 36(12):2589–2594

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Harder DR (2002) Cerebral capillary endothelial cell mitogenesis and morphogenesis induced by astrocytic epoxyeicosatrienoic acid. Stroke 33:2957–2964

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health PO1 HL059996, RO1 HL033833, and RO1 HL092105, and also by the VA Research Career Scientist Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Harder PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harder, D.R., Terashvili, M., Gebremedhin, D. (2012). Role of a Changing Membrane Potential (Em) and Matching Blood Flow with Neuronal Activity. In: Li, Y., Zhang, J. (eds) Metal Ion in Stroke. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9663-3_19

Download citation

Publish with us

Policies and ethics