Skip to main content

Abstract

This final chapter is designed to show how the instrumentation, theory, and methods of EELS can be combined to extract useful information from TEM specimens, with the possibility of high spatial resolution. As in previous chapters, we begin with low-loss spectroscopy and energy filtering, followed by core-loss analysis and elemental mapping, including factors that determine detection sensitivity and spatial resolution. Structural information obtained through the analysis of spectral fine structure is then discussed, and a final section shows how EELS has been applied to a few selected materials systems. Meanwhile, Table 5.1 lists the information obtainable by energy-loss spectroscopy and by alternative high-resolution methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Freeware available from http://www.astro.princeton.edu/~draine/DDSCAT.html

  2. 2.

    A. Hitchcock and colleagues: http://unicorn.mcmaster.ca/corex/name-list.html

References

  • Adamson-Sharpe, K. M., and Ottensmeyer, F. P. (1981) Spatial resolution and detection sensitivity in microanalysis by electron energy-loss selected imaging. J. Microsc. 122, 309–314.

    CAS  Google Scholar 

  • Ade, H., Zhang, X., Cameron, S., Costello, C., Kirz, J., and Williams, S. (1992) Chemical contrast in x-ray microscopy and spatially resolved XANES spectroscopy of organic specimens. Science 258, 972–975.

    Article  CAS  Google Scholar 

  • Ahn, C. C., and Krivanek, O. L. (1983) EELS Atlas, Arizona State University and Gatan Inc., Tempe, AZ

    Google Scholar 

  • Alexander, D. T. L., Crozier, P. A., and Anderson, J. R. (2008) Brown carbon spheres in east Asian outflow and their optical properties. Science 321, 833–836.

    Article  CAS  Google Scholar 

  • Arenal, R., de la Peña, F., Stéphan, O., Walls, M., Tencé, M., Loiseau, A., and Colliex, C. (2008) Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures. Ultramicroscopy 109, 32–38.

    Article  CAS  Google Scholar 

  • Arsenault, A. L., and Ottensmeyer, F. P. (1983) Quantitative spatial distribution of calcium, phosphorus and sulfur in calcifying epiphysis by high resolution spectroscopic imaging. Proc. Natl. Acad. Sci. USA 80, 1322–1326.

    Article  CAS  Google Scholar 

  • Ashley, J. C., and Williams, M. W. (1980) Electron mean free paths in solid organic insulators. Radiat. Res. 81, 364–378.

    Article  CAS  Google Scholar 

  • Auchterlonie, G. J., McKenzie, D. R., and Cockayne, D. J. H. (1989) Using ELNES with parallel EELS for differentiating between a-Si:X thin films. Ultramicroscopy 31, 217–232.

    Article  CAS  Google Scholar 

  • Bakenfelder, A., Fromm, I., Reimer, L., and Rennenkamp, R. (1989) Contrast in the electron spectroscopic imaging mode of a TEM. III. Bragg contrast of crystalline specimens. J. Microsc. 159, 161–177.

    Google Scholar 

  • Bangert, U., Harvey, A. J., Fruendt, D., and Keyse, R. (1997) Highly spatially resolved electron energy-loss spectroscoy in the bandgap region of GaN. J. Microsc. 188, 237–242.

    Article  CAS  Google Scholar 

  • Barfels, M. M. G., Jiang, X., Heng, Y. M., Arsenault, A. L., and Ottensmeyer, F. P. (1998) Low energy loss electron microscopy of chromophores. Micron 29, 97–104.

    Article  CAS  Google Scholar 

  • Batson, P. E. (1992a) Electron energy loss studies in semiconductors. In Transmission Electron Energy Loss Spectrometry in Materials Science, eds. M. M. Disko, C. C. Ahn, and B. Fulz, The Minerals, Metals and Materials Society, Warrendale, PA, pp. 217–240.

    Google Scholar 

  • Batson, P. E. (1993a) Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic column sensitivity. Nature 366, 727–728.

    Article  CAS  Google Scholar 

  • Batson, P. E., and Craven, A. J. (1979) Extended fine structure on the carbon core-ionization edge obtained from nanometer-sized areas with electron energy-loss spectroscopy. Phys. Rev. Lett. 42, 893–897.

    Article  CAS  Google Scholar 

  • Batson, P. E., Kavanagh, K. L., Woodall, J. M., and Mayer, J. W. (1986) Electron-energy-loss scattering near a single misfit dislocation at the GaAs/GaInAs interface. Phys. Rev. Lett. 57, 2729–2732.

    Article  CAS  Google Scholar 

  • Batson, P. E., Chisholm, M. F., Clarke, D. R., Dimos, D., and Shaw, T. (1989) Energy-loss studies of carbon content in yttrium barium cuprate. In Proc. 47th Ann. Meet. Electr. Microsc. Soc. Am., ed. G. W. Bailey, San Francisco Press, San Francisco, CA, pp. 196–197.

    Google Scholar 

  • Batson, P. E., Johnson, D. W., and Spence, J. C. H. (1992) Resolution enhancement by deconvolution using a field emission source in electron energy loss spectroscopy. Ultramicroscopy 41, 137–145.

    Article  Google Scholar 

  • Bauer, R., Hezel, U., and Kurz, D. (1987) High resolution imaging of thick biological specimens with an imaging electron energy loss spectrometer. Optik 77, 171–174.

    CAS  Google Scholar 

  • Bazett-Jones, D. P., and Ottensmeyer, F. P. (1981) Phosphorus distribution in the nucleosome. Science 211, 169–170.

    Article  CAS  Google Scholar 

  • Bendayan, M., Barth, R. F., Gingras, D., Londono, I., Robinson, P. T., Alam, F., Adams, D. M., and Mattiazzi, L. (1989) Electron spectroscopic imaging for high-resolution immunocytochemistry: Use of boronated protein A. J. Histochem. Cytochem. 37, 573–580.

    Article  CAS  Google Scholar 

  • Bentley, J. (1992) Applications of EELS to ceramics and catalysts. In Transmission Electron Energy Loss Spectrometry in Materials Science, eds. M. M. Disko, C. C. Ahn, and B. Fulz, The Minerals, Metals and Materials Society, Warrendale, PA, pp. 155–181.

    Google Scholar 

  • Berger, S. D., Salisbury, I. G., Milne, R. H., Imeson, D., and Humphreys, C. J. (1987) Electron energy-loss spectroscopy studies of nanometre-scale structures in alumina produced by intense electron-beam irradiation. Philos. Mag. B 55, 341–358.

    Article  CAS  Google Scholar 

  • Berger, S. D., McKenzie, D. R., and Martin, P. J. (1988) EELS analysis of vacuum arcdeposited diamond-like films. Philos. Mag. Lett. 57, 285–290.

    Article  CAS  Google Scholar 

  • Bianconi, A., Dell’Ariccia, M., Durham, P. J., and Pendry, P. J. (1982) Multiple scattering resonances and structural effects in the x-ray absorption near edge spectra of Fe II and Fe III hexacyanide complexes. Phys. Rev. B 26, 6502–6508.

    Article  CAS  Google Scholar 

  • Bianconi, A., Dell’Ariccia, M., Gargano, A., and Natoli, C. R. (1983a) Bond length determination using XANES. In EXAFS and Near Edge Structure, eds. A. Bianconi, L. Incoccia, and S. Stipcich, Springer, New York, NY, pp. 57–61.

    Google Scholar 

  • Blake, D., Freund, F., Krishnan, K. F. M., Echer, C. J., Shipp, R., Bunch, T. E., Tielens, A. G., Lipari, R. J., Hetherington, C. J. D., and Chang, S. (1988) The nature and origin of interstellar diamond. Nature 332, 611–613.

    Article  CAS  Google Scholar 

  • Blanche, G., Hug, G., Jaouen, M., and Flank, A. M. (1993) Comparison of the TiK extended fine structure obtained from electron energy loss spectroscopy and x-ray absorption spectroscopy. Ultramicroscopy 50, 141–145.

    Article  CAS  Google Scholar 

  • Böhmer, J., and Rahmann, H. (1990) Ultrastructural localization of aluminum in amphibian larvae. Ultramicroscopy 32, 18–25.

    Article  Google Scholar 

  • Borglund, M., Åstrand, P.-G., and Csillag, S. (2005) Improved background removal method using principal components analysis for spatially resolved electron energy loss spectroscopy. Microsc. Microanal. 11, 88–96.

    Article  CAS  Google Scholar 

  • Botton, G. A. (2005) A new approach to study bonding anisotropy with EELS. J. Electron Spectrosc. Relat. Phenom. 143, 129–137.

    Article  CAS  Google Scholar 

  • Botton, G. A., and Phaneuf, M. W. (1999) Imaging, spectroscopy and spectroscopic imaging with an energy filtered field emission TEM. Micron 30, 109–119.

    Article  Google Scholar 

  • Bouchet, D., and Colliex, C. (2003) Experimental study of ELNES at grain boundaries in alumina: Intergranular radiation damage effects on Al-L23 and O-K edges. Ultramicroscopy 96, 139–152.

    Article  CAS  Google Scholar 

  • Bourdillon, A. J. (1984) The measurement of impact parameters by crystallographic orientation effects in electron scattering. Philos. Mag. 50, 839–848.

    Article  CAS  Google Scholar 

  • Bourdillon, A., Self, P. G., and Stobbs, W. M. (1981b) Crystallographic orientation in energy dispersive x-ray analysis. Philos. Mag. A 44, 1335–1350.

    Article  CAS  Google Scholar 

  • Bourdillon, A. J., El Mashri, S. M., and Forty, A. J. (1984) Application of extended electron energy loss fine structure to the study of aluminum oxide films. Philos. Mag. 49, 341–352.

    CAS  Google Scholar 

  • Bourret, A., and Colliex, C. (1982) Combined HREM and STEM microanalysis on decorated dislocation cores. Ultramicroscopy 9, 183–190.

    Article  CAS  Google Scholar 

  • Braun, A., Huggins, F. E., Shah, N., Chen, Y., Wirisk, S., Mun, S. B., Jacobsen, C., and Huffman, G. P. (2005) Advantages of x-ray absorption over TEM-EELS for solid carbon studies – a comparative study on diesel soot with EELS and NEXAFS. Carbon 43, 117–124.

    Article  CAS  Google Scholar 

  • Browning, N. D., and Pennycook, S. J. (1993) Atomic resolution spectroscopy for the micro-analysis analysis of materials. Microbeam Anal. 2, 81–89.

    CAS  Google Scholar 

  • Browning, N. D., Chisholm, M. F., and Pennycook, S. J. (1993a) Cell-by-cell mapping of carrier concentrations in high temperature superconductors. Interface Sci. 1, 309–319.

    CAS  Google Scholar 

  • Browning, N. D., Chisholm, M. F., and Pennycook, S. J. (1993b) Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143–146.

    Article  CAS  Google Scholar 

  • Browning, N. D., Buban, J. P., Prouteau, C., Duscher, G., and Pennycook, S. J. (1999) Investigating the atomic scale structure and chemistry of grain boundaries in high-Tc superconductors. Micron 30, 425–436.

    Article  CAS  Google Scholar 

  • Bruley, J. (1992) Detection of nitrogen at {100} platelets in a type IaA/B diamond. Philos. Mag. Lett. 66, 47–56.

    Article  CAS  Google Scholar 

  • Bruley, J. (1993) Spatially resolved electron energy-loss near-edge structure analysis of a near Σ = 11 tilt boundary in sapphire. Microsc. Microanal. Microstruct. 4, 23–39.

    Article  CAS  Google Scholar 

  • Bruley, J., and Batson, P. E. (1989) Electron-energy-loss studies of dislocations in diamond. Phys. Rev. B 40, 9888–9894.

    Article  CAS  Google Scholar 

  • Bruley, J., and Brown, L. M. (1989) Quantitative electron energy-loss spectroscopy microanalysis of platelet and voidite defects in diamond. Philos. Mag. A 59, 247–261.

    Article  CAS  Google Scholar 

  • Bruley, J., Brydson, R., Müllejans, H., Mayer, J., Gutekunst, G., Mader, W., Knauss, D., and Rühle, M. (1994) Investigations of the chemistry and bonding at niobium-sapphire interfaces. J. Mater. Res. 9, 2574–2583.

    Article  CAS  Google Scholar 

  • Bruley, J., Williams, D. B., Cuomo, J. J., and Pappas, D. P. (1995) Quantitative near-edge structure analysis of diamond-like carbon in the electron microscope using a two-window method. J. Microsc. 180, 22–32.

    CAS  Google Scholar 

  • Brydson, R. (1991) Interpretation of near-edge structure in the electron energy-loss spectrum. EMSA Bull. 21, 57–67.

    Google Scholar 

  • Brydson, R., Sauer, H., Engel, W., Thomas, J. M., and Zeitler, E. (1989) Co-ordination fingerprints in electron loss near-edge structures: Determination of the local site symmetry of aluminum and beryllium in ultrafine minerals. J. Chem. Soc., Chem. Commun. 15, 1010–1012.

    Article  Google Scholar 

  • Brydson, R., Richardson, I. G., McComb, D. W., and Groves, G. W. (1993) Parallel electron energy loss spectroscopy study of Al-substituted calcium silicate hydrate (C–S–H) phases present in hardened cement pastes. Solid State Commun. 88, 183–187.

    Article  CAS  Google Scholar 

  • Brydson, R., Mullejans, H., Bruley, J., Trusty, P. A., Sun, X., Yeomans, J. A., and Ruhle, M. (1995) Spatially resolved electron energy-loss studies of metal ceramic interfaces in transition metal/alumina cermets. J. Microsc. 177, 369–386.

    CAS  Google Scholar 

  • Buffat, B., and Tuilier, M. H. (1987) X-ray absorption edges of iron and cobalt with six-fold coordination in oxides: Influence of site distortion and oxidation state. Solid State Commun. 64, 401–406.

    Article  CAS  Google Scholar 

  • Bullough, T. J. (1997) Sputtering and the formation of nanometre voids and holes in aluminium in a scanning transmission electron microscope. Philos. Mag. A 75, 69–85.

    Article  CAS  Google Scholar 

  • Burgess, W. G., Preston, A. R., Botton, G. A., Zaluzec, N. J., and Humphreys, C. J. (1994) Benefits of energy filtering for advanced convergent beam electron diffraction patterns. Ultramicroscopy 55, 276–283.

    Article  CAS  Google Scholar 

  • Bursill, L. A., Egerton, R. F., Thomas, J. M., and Pennycook, S. (1981) High-resolution imaging and electron energy-loss studies of platelet defects in diamond. J. Chem. Soc. Faraday Trans. 77, 1367–1373.

    Article  CAS  Google Scholar 

  • Carlemalm, E., and Kellenberger, E. (1982) The reproducible observation of unstained embedded cellular material in this section: Visualization of an integral membrane by a new mode of imaging for STEM. EMBO J. 1, 63–67.

    CAS  Google Scholar 

  • Carlemalm, E., Acetarin, J. D., Villinger, W., Colliex, C., and Kellenberger, E. (1982) Heavy metal containing surroundings provide much more “negative” contrast by Z-imaging in STEM than with conventional modes. J. Ultrastruct. Res. 80, 339–343.

    Article  CAS  Google Scholar 

  • Castaing, R. (1975) Energy filtering in electron microscopy and electron diffraction. In Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. B. Siegel, Wiley, New York, NY, pp. 287–301.

    Google Scholar 

  • Castro-Fernandez, F. R., Sellars, C. M., and Whiteman, J. A. (1985) Measurement of foil thickness and extinction distance by convergent beam transmission electron microscopy. Philos. Mag. A 52, 289–303.

    Article  CAS  Google Scholar 

  • Catalano, M., Kim, M. J., Carpenter, R. W., Chowdhury, K. D., and Wong, J. (1993) The composition and structure of SIPOS: A high spatial resolution electron microscopy study. J. Mater. Res. 8, 2893–2901.

    Article  CAS  Google Scholar 

  • Cazaux, J. (1995) Correlations between ionization radiation damage and charging effects in transmission electron microscopy. Ultramicroscopy 60, 411–425.

    Article  CAS  Google Scholar 

  • Cha, J. J., Yu, Z., Smith, E., Couillard, M., Fan, S., and Muller, D. A. (2010) Mapping local optical densities of states in silicon photonic structures with nanoscale electron spectroscopy. Phys. Rev. B 81, 113102 (4 pages).

    Article  CAS  Google Scholar 

  • Chan, H. M., and Williams, D. B. (1985) Quantitative analysis of lithium in Al–Li alloys by ionization energy loss spectroscopy. Philos. Mag. B 52, 1019–1032.

    Article  CAS  Google Scholar 

  • Chen, C. H., Joy, D. C., Chen, H. S., and Hauser, J. J. (1986) Observation of anomalous plasmon linewidth in the icosahedral Al-Mn quasicrystals. Phys. Rev. Lett. 57, 743–746.

    Article  CAS  Google Scholar 

  • Chen, M. Y., Li, D., Dravid, V. P., Chung, Y.-W., Wong, M.-S., and Sproul, W. D. (1993) Analytical electron microscopy and Raman spectroscopy studies of carbon nitride thin films. J. Vac. Sci. Technol. A 11, 521–524.

    Article  CAS  Google Scholar 

  • Cherns, D., Howie, A., and Jacobs, M. H. (1973) Characteristic x-ray production in thin crystals. Z. Naturforsch. 28a, 565–571.

    Google Scholar 

  • Ciliax, B. J., Kirk, K. L., and Leapman, R. D. (1993) Radiation damage of fluorinated organic compounds measured by parallel electron energy loss spectroscopy. Ultramicroscopy 48, 13–25.

    Article  CAS  Google Scholar 

  • Cliff, G., and Kenway, P. B. (1982) The effects of spherical aberration in probe-forming lenses on probe size, image resolution and x-ray spatial resolution in scanning transmission electron microscopy. In Microbeam Analysis – 1982, ed. K. F. J. Heinrich, San Francisco Press, San Francisco, CA, pp. 107–110.

    Google Scholar 

  • Collett, S. A., Brown, L. M., and Jacobs, M. H. (1984) Demonstration of superior resolution of EELS over EDX in microanalysis. In Developments in Electron Microscopy and Analysis 1983, Inst. Phys. Conf. Ser. No. 68, ed. P. Doig, I.O.P., Bristol, pp. 103–106.

    Google Scholar 

  • Colliex, C., Gasgnier, M., and Trebbia, P. (1976b) Analysis of the electron excitation spectra in heavy rare earth metals, hydrides and oxides. J. Phys. (Paris) 37, 397–406.

    CAS  Google Scholar 

  • Colliex, C., Mory, C., Olins, A. L., Olins, D. E., and Tencé, M. (1989) Energy-filtered STEM of thick biological sections. J. Microsc. 153, 1–21.

    CAS  Google Scholar 

  • Costa, J. L., Joy, D. C., Maher, D. M., Kirk, K. L., and Hui, S. W. (1978) Fluorinated molecule as a tracer: Difluoroserotonin in human platelets mapped by electron energy-loss spectroscopy. Science 200, 537–539.

    Article  CAS  Google Scholar 

  • Couillard, M., Kociak, M O., Stéphan, O., Botton, G. A., and Colliex, C. (2007) Multiple-interface coupling effects in local electron-energy-loss measurements of band gap energies. Phys. Rev. B 76, 165131 (5 pages).

    Article  CAS  Google Scholar 

  • Couillard, M., Yurtsever, A., and Muller, D. A. (2008) Competition between bulk and interface plasmonic modes in valence electron energy-loss spectroscopy of ultrathin SiO2 gate stacks. Phys. Rev. B 77, 085318 (8 pages).

    Article  CAS  Google Scholar 

  • Craven, A. J., Gibson, J. M., Howie, A., and Spalding, D. R. (1978) Study of single-electron excitations by electron microscopy: I. Image contrast from delocalized excitations. Philos. Mag. A38, 519–527.

    Google Scholar 

  • Craven, A. J., Cluckie, M. M., Duckworth, S. P., and Baker, T. N. (1989) Analysis of small vanadium carbide precipitates using electron energy loss spectroscopy. Ultramicroscopy 28, 330–334.

    Article  CAS  Google Scholar 

  • Craven, A. J., MacKenzie, M. A., Cerezo, A., Godfrey, T., and Clifton, P. H. (2008) Spectrum imaging and three-dimensional atom probe studies of fine partoicles in a vanadium micro-alloyed steel. Mater. Sci. Technol. 24, 641–650.

    Article  CAS  Google Scholar 

  • Crewe, A. V., Langmore, J. P., and Isaacson, M. S. (1975) Resolution and contrast in the scanning transmission electron microscope. In Physical Aspects of Electron Microscopy and Microbeam Analysis, eds. B. M. Siegel and D. R. Beaman, Wiley, New York, NY, pp. 47–62.

    Google Scholar 

  • Crozier, P. A. (1990) Measurement of inelastic electron scattering cross-sections by electron energy-loss spectroscopy. Philos. Mag. 61, 311–336.

    CAS  Google Scholar 

  • Crozier, P. A. (1995) Quantitative elemental mapping of materials by energy-filtered imaging. Ultramicroscopy 58, 157–174.

    Article  CAS  Google Scholar 

  • Crozier, P. A., and Chenna, S. (2011) In-situ analysis of gas composition by electron energy-loss spectroscopy for environmental transmission electron microscopy. Ultramicroscopy 111, 177–185.

    Article  CAS  Google Scholar 

  • Crozier, P. A., and Egerton, R. F. (1989) Mass-thickness determination by Bethe-sum-rule normalization of the electron energy-loss spectrum. Ultramicroscopy 27, 9–18.

    Article  Google Scholar 

  • Crozier, P. A., Wang, R., and Sharma, R. (2008) In situ environmental TEM studies of dynamic changes in cerium-based oxide nanoparticles during redox processes. Ultramicroscopy 108, 1432–1440.

    Article  CAS  Google Scholar 

  • Cundy, S. L., and Grundy, P. J. (1966) Combined electron microscopy and energy analysis of an internally oxidized Ni + Si alloy. Philos. Mag. 14, 1233–1242.

    Article  CAS  Google Scholar 

  • Cuomo, J. J., Doyle, J. P., Bruley, J., and Liu, J. C. (1991) Sputter deposition of dense diamond-like carbon films at low temperature. Appl. Phys. Lett. 58, 466–468.

    Article  CAS  Google Scholar 

  • Dato, A., Radmilovic, V., Lee, Z., Phillips, J., and Frenklach, M. (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 8, 2010–2016.

    Article  CAS  Google Scholar 

  • Daulton, T. L., and Little, B. J. (2006) Determination of chromium valence over the range Cr(0)–Cr(VI) by electron energy loss spectroscopy. Ultramicroscopy 106, 561–573.

    Article  CAS  Google Scholar 

  • Daulton, T. L., Little, B. J., and Lowe, K. (2003) Determination of chromium oxidation state in cultures of dissimilatory metal reducing bacteria by electron energy loss spectroscopy. Microsc. Microanal. 9 (Suppl. 2), 1480–1481.

    Google Scholar 

  • Davis, C. A., McKenzie, D. R., Yin, Y., Kravtchinskaia, E., Amaratunga, G. A. J., and Veerasamy, V. S. (1994) Substitutional nitrogen doping of tetrahedral amorphous carbon. Philos. Mag. B 69, 1133–1140.

    Article  CAS  Google Scholar 

  • Devenish, R. W., Eaglesham, D. J., Maher, D. M., and Humphreys, C. J. (1989) Nanolithography using field emission and conventional thermionic electron sources. Ultramicroscopy 28, 324–329.

    Article  Google Scholar 

  • Diociaiuti, M., Falchi, M., and Paoletti, L. (1995) Electron energy loss spectroscopy study of iron deposition in human alveolar macrophages: Ferritin or hemosiderin? Microsc. Microanal. Microstruct. 6, 33–40.

    Article  CAS  Google Scholar 

  • Disko, M. M. (1981) An EXELFS analysis system and the preliminary orientation dependence of EXELFS in graphite. In Analytical Electron Microscopy – 1981, ed. R. H. Geiss, San Francisco Press, San Francisco, CA, pp. 214–220.

    Google Scholar 

  • Disko, M. M., Meitzner, G., Ahn, C. C., and Krivanek, O. L. (1989) Temperature-dependent transmission extended electron energy-loss fine-structure of aluminum. J. Appl. Phys. 65, 3295–3297.

    Article  CAS  Google Scholar 

  • Disko, M. M., Luton, M. J., and Shuman, H. (1991) Energy-loss near-edge fine structure and composition profiles of cryomilled oxide-dispersion-strengthened aluminum. Ultramicroscopy 37, 202–209.

    Article  CAS  Google Scholar 

  • Ditchfield, R. W., and Cullis, A. G. (1976) Plasmon energy-loss analysis of epitaxial layers in silicon and germanium. Micron 7, 133–140.

    CAS  Google Scholar 

  • Ditchfield, R. W., Grubb, D. T., and Whelan, M. J. (1973) Electron energy-loss studies of polymers during radiation damage. Philos. Mag. 27, 1267–1280.

    Article  CAS  Google Scholar 

  • Dravid, V. P., and Zhang, H. (1992) Hole formation and charge transfer in Y1−x Ca x Sr2Cu2GaO7, a new oxide superconductor. Physica C 200, 349–358.

    Article  CAS  Google Scholar 

  • Dravid, V. P., Zhang, H., and Wang, Y. Y. (1993) Inhomogeneity of charge carrier concentration along the grain boundary plane in oxide superconductors. Physica C 213, 353–358.

    Article  CAS  Google Scholar 

  • Du Chesne, A. (1999) Energy filtering transmission electron microscopy of polymers – Benefit and limitations of the method. Macromol. Chem. Phys. 200, 1813–1830.

    Article  Google Scholar 

  • Duckworth, S. P., Craven, A. J., and Baker, T. N. (1984) Comparison of carbon and noncarbon replicas for ELS. In Analytical Electron Microscopy – 1984, eds. D. B. Williams and D. C. Joy, San Francisco Press, San Francisco, CA, pp. 235–238.

    Google Scholar 

  • Eberlein, T., Bangert, U., Nair, R. R., Jones, R., Gass, M., Bleloch, A. L., Novoselov, K.S., Geim, A., and Briddon, P. R. (2008) Plasmon spectroscopy of free-standign graphene films. Phys. Rev. B 77, 233406 (4 pages).

    Article  CAS  Google Scholar 

  • Egerton, R. F. (1976a) Measurement of inelastic/elastic scattering ratio for fast electrons and its use in the study of radiation damage. Phys. Status Solidi (a) 37, 663–668.

    Article  CAS  Google Scholar 

  • Egerton, R. F. (1976c) Inelastic scattering and energy filtering in the transmission electron microscope. Philos. Mag. 34, 49–66.

    Article  CAS  Google Scholar 

  • Egerton, R. F. (1978a) Formulae for light-element microanalysis by electron energy-loss spectrometry. Ultramicroscopy 3, 243–251.

    Article  CAS  Google Scholar 

  • Egerton, R. F. (1980c) Chemical measurements of radiation damage at and below room temperature. Ultramicroscopy 5, 521–523.

    CAS  Google Scholar 

  • Egerton, R. F. (1980f) Measurement of radiation damage by electron energy-loss spectroscopy, J. Microsc. 118, 389–399.

    Google Scholar 

  • Egerton, R. F. (1981c) The range of validity of EELS microanalysis formulae. Ultramicroscopy 6, 297–300.

    CAS  Google Scholar 

  • Egerton, R. F. (1982b) Organic mass loss at 100 K and 300 K. J. Microsc. 126, 95–100.

    CAS  Google Scholar 

  • Egerton, R. F. (1982d) Thickness dependence of the STEM ratio image. Ultramicroscopy 9, 297–299.

    Article  Google Scholar 

  • Egerton, R. F. (1993) Oscillator-strength parameterization of inner-shell cross sections. Ultramicroscopy 50, 13–28.

    Article  CAS  Google Scholar 

  • Egerton, R. F., and Cheng, S. C. (1987) Measurements of local thickness by electron energy-loss spectroscopy. Ultramicroscopy 21, 231–244.

    Article  Google Scholar 

  • Egerton, R. F., and Rossouw, C. J. (1976) Direct measurement of contamination and etching rates in an electron beam. J. Phys. D 9, 659–663.

    Article  CAS  Google Scholar 

  • Egerton, R. F., and Takeuchi, M. (1999) Radiation damage to fullerite (C60) in the transmission electron microscope. Appl. Phys. Lett. 75, 1884–1886.

    Article  CAS  Google Scholar 

  • Egerton, R. F., Crozier, P. A., and Rice, P. (1987) Electron energy-loss spectroscopy and chemical change. Ultramicroscopy 23, 305–312.

    Article  CAS  Google Scholar 

  • Egerton, R. F., Yang, Y.-Y., and Chen, F. Y. Y. (1991) EELS of “thick” specimens. Ultramicroscopy 38, 349–352.

    Article  Google Scholar 

  • Egerton, R. F., Li, P., and Malac, M. (2004) Radiation damage in the TEM and SEM. Micron 35, 399–409.

    Article  CAS  Google Scholar 

  • Egerton, R. F., Wang, F., and Crozier, P. A. (2006b) Beam-induced damage to thin specimens in an intense electron probe. Microsc. Microanal. 12, 65–71.

    Article  CAS  Google Scholar 

  • Egerton, R. F., McLeod, R., Wang, F., and Malac, M. (2010) Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110, 991–997.

    Article  CAS  Google Scholar 

  • Erni, R., Browning, N. D., Daic, Z. R., and Bradley, J. P. (2005) Analysis of extraterrestrial particles using monochromated electron energy-loss spectroscopy. Micron 36, 369–379.

    Article  CAS  Google Scholar 

  • Fallon, P. J., and Brown, L. M. (1993) Analysis of chemical-vapour-deposited diamond grain boundaries using transmission electron microscopy and parallel electron energy loss spectroscopy in a scanning transmission electron microscope. Diamond Relat. Mater. 2, 1004–1011.

    Article  CAS  Google Scholar 

  • Fallon, P. J., Brown, L. M., Barry, J. C., and Bruley, J. (1995) Nitrogen determination and characterization in natural diamond platelets. Philos. Mag. A 72, 21–37.

    Article  CAS  Google Scholar 

  • Feja, B., and Aebi, U. (1999) Molecular mass determination by STEM and EFTEM: A critical comparison. Micron 30, 299–307.

    Article  CAS  Google Scholar 

  • Feja, B., Durrenberger, M., Muller, S., Reichelt, R., and Aebl, U. (1997) Mass determination by inelastic electron scattering in an energy-filtering transmission electron microscope with a slow-scan CCD camera. J. Struct. Biol. 119, 72–82.

    Article  CAS  Google Scholar 

  • Ferrari, A. C., Libassi, A., Tanner, B. K., Stolojan, V., Yuan, J., Brown, L. M., Rodil, S. E., Kleinsorge, B., and Robertson, J. (2000) Density, sp 3 fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy. Phys. Rev. B 627, 11089–11103.

    Article  Google Scholar 

  • Fink, J., Muller-Heinzerling, T., Pflü, J., Bubenzer, A., Koidl, P., and Crecelius, G. (1983) Structure and bonding of hydrocarbon plasma generated carbon films: An electron energy loss study. Solid State Commun. 47, 687–691.

    Article  CAS  Google Scholar 

  • Fink, J., Nücker, N., Pellegrin, E., Romberg, H., Alexander, M., and Knupfer, M. (1994) Electron energy-loss and x-ray absorption spectroscopy of cuprate superconductors and related compounds. J. Electron Spectrosc. Relat. Phenom. 66, 395–452.

    Article  CAS  Google Scholar 

  • Fiori, C. E., Leapman, R. D., Swyt, C. R., and Andrews, S. B. (1988) Quantitative x-ray mapping of biological cryosections. Ultramicroscopy 24, 237–250.

    Article  CAS  Google Scholar 

  • Fitting Kourkoutis, L., Xin, H. L., Higuchi, T., Hotta, Y., Lee, J. H., Hikita, Y., Schlom, D. G., Hwang, H. Y., and Muller, D. A. (2010) Atomic-resolution spectroscopic imaging of oxide interfaces. Philos. Mag. 90, 4731–4749.

    Article  CAS  Google Scholar 

  • Frabboni, S., Lulli, G., Merli, P. G., Migliori, A., and Bauer, R. (1991) Electron spectroscopic imaging of dopant precipitation and segregation in silicon. Ultramicroscopy 35, 265–269.

    Article  CAS  Google Scholar 

  • Fréchard, S., Walls, M., Kociak, M., Chevalier, J. P., Henry, J., and Gorse, G. (2009) Study by EELS of helium bubbles in martensitic steel. J. Nucl. Mater. 393, 102–107.

    Article  CAS  Google Scholar 

  • Fryer, J. R., and Holland, F. (1984) High resolution electron microscopy of molecular crystals: III. Radiation processes at room temperature. Proc. R. Soc. Lond. A393, 353–369.

    Google Scholar 

  • Garavito, R. M., Carlemalm, E., Colliex, C., and Villiger, W. (1982) Septate junction ultrastructure as visualized in unstained and stained preparations. J. Ultrastruct. Res. 80, 334–353.

    Article  Google Scholar 

  • Garcia de Abajo, F. J., Pattantyus-Abraham, A. G., Zabala, N., Rivacobe, A., Wolf, M. O., and Echeniqueo, P. M. (2003) Cherenkov effect as a probe of photonic nanostructures. Phys. Rev. Lett. 91, 143902 (4 pages).

    Article  CAS  Google Scholar 

  • Garcia de Abajo, F. J., Rivacoba, A., Zabala, N., and Yamamoto, N. (2004) Boundary effects in Cherenkov radiation. Phys. Rev. B 69, 155429 (12 pages).

    Article  CAS  Google Scholar 

  • Garvie, L. A. J. (2010) Can electron energy-loss spectroscopy (EELS) be used to quantify hydrogen in minerals from the O K-edge? Am. Mineral. 95, 92–97.

    Article  CAS  Google Scholar 

  • Garvie, L. A. J., Craven, A. J., and Brydson, R. (1994) Use of electron-energy loss near-edge fine structure in the study of minerals. Am. Mineral. 79, 411–425.

    CAS  Google Scholar 

  • Gass, M. H., Koziol, K., Windle, A. H., and Midgley, P. A. (2006b) Four-dimensional spectral tomography of carbonaceous nanocomposites. Nano Lett. 6, 376–379.

    Article  CAS  Google Scholar 

  • Gass, M. H., Bangert, U., Bleloch, A. L., Wang, P., Nair, R. R., and Geim, A. K. (2008) Free-standing graphene at atomic resolution. Nat. Nanotechnol. 3, 676–681.

    Article  CAS  Google Scholar 

  • Gatts, C., Duscher, G., Müllejans, H., and Rühle, M. (1995) Analyzing line scan profiles with neural pattern recognition. Ultramicroscopy 59, 229–240.

    Article  CAS  Google Scholar 

  • Genç, A., Banerjee, R., Thompson, G. B., Maher, D. M., Johnson, A. W., and Fraser, H. L. (2009) Complementary techniques for the characterization of thin film Ni/Nb multilayers. Ultramicroscopy 10, 1276–1281.

    Article  CAS  Google Scholar 

  • Glaeser, R. M. (1975) Radiation damage and biological electron microscopy. In Physical Aspects of Electron Microscopy and Microbeam Analysis, eds. B. M. Siegel and D. R. Beaman, Wiley, New York, NY, pp. 205–229.

    Google Scholar 

  • Graczyk, J. F., and Moss, S. C. (1969) Scanning electron diffraction attachment with electron energy filtering. Rev. Sci. Instrum. 40, 424–433.

    Article  Google Scholar 

  • Gu, L., Sigle, W., Koch, C. T., Nelayah, J., Srot, V., and vanAken, P. A. (2009) Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy. Ultramicroscopy 109,1164–1170.

    Article  CAS  Google Scholar 

  • Gubbens, A. J., Barfels, M., Trevor, C., Twesten, R., Mooney, P., Thomas, P., Menon, N., Kraus, B., Mao, C., and McGinn, B. (2010) The GIF Quantum, a next generation post-column imaging energy filter. Ultramicroscopy 110, 962–970.

    Article  CAS  Google Scholar 

  • Hainfeld, J., and Isaacson, M. (1978) The use of electron energy-loss spectroscopy for studying membrane architecture: A preliminary report. Ultramicroscopy 3, 87–95.

    Article  CAS  Google Scholar 

  • Hall, T. A. (1979) Biological X-ray microanalysis. J. Microsc. 117, 145–163.

    CAS  Google Scholar 

  • Hansen, P. L., Fallon, P. J., and Krätschmer, W. (1991) An EELS study of fullerite – C60/C70. Chem. Phys. Lett. 181, 367–372.

    Article  CAS  Google Scholar 

  • Herley, P. J., Jones, W., Sparrow, T. G., and Williams, B. G. (1987) Plasmon spectra of lightmetal hydrides. Mater. Lett. 5, 333–336.

    Article  CAS  Google Scholar 

  • Hibbert, G., and Eddington, J. W. (1972) Experimental errors in combined electron microscopy and energy analysis. J. Phys. D 5, 1780–1786.

    Article  CAS  Google Scholar 

  • Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J. (1977) Electron Microscopy of Thin Crystals, Krieger, Huntington, New York, NY.

    Google Scholar 

  • Hitchcock, A. P., Dynes, J. J., Johansson, G., Wang, J., and Botton, G. (2008) Comparison of NEXAFS microscopy and TEM-EELS for studies of soft matter. Micron 39, 311–319.

    Article  CAS  Google Scholar 

  • Hobbs, L. W. (1984) Radiation effects in analysis by TEM. In Quantitative Electron Microscopy, eds. J. N. Chapman and A. J. Craven, SSUP Publications, University of Edinburgh, Scotland, pp. 399–443.

    Google Scholar 

  • Hofer, F., and Golub, P. (1987) New examples of near-edge fine structures in electron energy loss spectroscopy. Ultramicroscopy 21, 379–384.

    Article  CAS  Google Scholar 

  • Hofer, F., and Kothleitner, G. (1993) Quantitative microanalysis using electron energy-loss spectrometry. I. Li and Be in oxides. Microsc. Microanal. Microstruct. 4, 539–560.

    Article  CAS  Google Scholar 

  • Hofer, F., and Warbichler, P. (1996) Improved imaging of secondary phases on solids by energy-filtering TEM. Ultramicroscopy 49, 189–197.

    Article  Google Scholar 

  • Hofer, F., Warbichler, P., and Grogger, W. (1995) Characterization of nanometre sized precipitates in solids by electron spectroscopic imaging. Ultramicroscopy 59, 15–31.

    Article  CAS  Google Scholar 

  • Hollenbeck, J. L., and Buchanan, R. C. (1990) Oxide thin films for nanometer scale electron beam lithography. J. Mater. Res. 5, 1058–1072.

    Article  CAS  Google Scholar 

  • Horiuchi, S., Hanada, T., Ebisawa, M., Matsuda, Y., Kobayahshi, M., and Takahara, A. (2009) Contamination-free electron microscopy for high-resolution carbon elemental mapping of polymers. ACS Nano 3, 1297–1304.

    Article  CAS  Google Scholar 

  • Hosoi, J., Oikawa, T., Inoue, M., Kokubo, Y., and Hama, K. (1981) Measurement of partial specific thickness (net thickness) of critical-point-dried cultured fibroblast by energy analysis. Ultramicroscopy 7, 147–154.

    Article  CAS  Google Scholar 

  • Howitt, D. G., Chen, S. J., Gierhart, B. C., Smith, R. L., and Collins, S. D. (2008) The electron beam hole drilling in silicon nitride. J. Appl. Phys. 103, 024310 (7 pages).

    Article  CAS  Google Scholar 

  • Hunt, J. A., and Williams, D. B. (1991) Electron energy-loss spectrum-imaging. Ultramicroscopy 38, 47–73.

    Article  CAS  Google Scholar 

  • Hunt, J. A., Disko, M. M., Bekal, S. K., and Leapman, R. D. (1995) Electron energy-loss chemical imaging of polymer phases. Ultramicroscopy 58, 55–64.

    Article  CAS  Google Scholar 

  • Iakoubovskii, K., Mitsuishi, K., Nakayama, Y., and Furuya, K. (2008a) Thickness measurements with electron energy loss spectroscopy. Microsc. Res. Tech. 71, 626–631.

    Article  CAS  Google Scholar 

  • Iakoubovskii, K., Mitsuishi, K., Nakayama, Y., and Furuya, K. (2008b) Mean free path of inelastic scattering in elemental solids and oxides using transmission electron microscopy: Atomic number dependent oscillatory behavior. Phys. Rev. B 71, 626–631.

    CAS  Google Scholar 

  • Idrobo, J. C., Chisholm, M. F., Prange, M., Tao, J., Zhu, Y., Ren, Z.-A., Zhao, Z. X., Pantelides, S. T., and Pennycook, S. J. (2010) Revealing electronic, structural and magnetic phases in NdFeAsO with electron energy-loss spectroscopy. Microsc. Microanal. 16 (Suppl. 2), 88–89.

    Article  CAS  Google Scholar 

  • Isaacson, M. (1972a) Interaction of 25 keV electrons with the nucleic acid bases, adenine, thymine, and uracil I, outer shell excitation. J. Chem. Phys. 56, 1803–1812.

    Article  CAS  Google Scholar 

  • Isaacson, M. (1972b) Interaction of 25 keV electrons with the nucleic acid bases, adenine, thymine and uracil. (II) Inner-shell excitation and inelastic scattering cross sections. J. Chem. Phys. 56, 1813–1818.

    Article  CAS  Google Scholar 

  • Isaacson, M. (1977) Specimen damage in the electron microscope. In Principles and Techniques of Electron Microscopy, ed. M. A. Hayat, Van Nostrand, New York, NY, Vol. 7, pp. 1–78.

    Google Scholar 

  • Isaacson, M. S., and Utlaut, M. (1978) A comparison of electron and photon beams for determining micro-chemical environment. Optik 50, 213–234.

    CAS  Google Scholar 

  • Jäger, W., and Mayer, J. (1995) Energy filtered transmission electron microscopy of Si m Ge n superlattices and Si-Ge heterostructures. Ultramicroscopy 59, 33–45.

    Article  Google Scholar 

  • Jin, Q., and Li, D. (2006) Determining inelastic mean free path by electron energy loss spectrocopy. Microsc. Microanal. 12 (Suppl. 2), 1186–1187.

    Article  Google Scholar 

  • Jiang, N., Su, D., and Spence, J. C. H. (2008) Comparison of Mg L23 edges in MgO and Mg(OH)2 – Importanceof medium-range structure. Ultramicroscopy 109, 122–128.

    Article  CAS  Google Scholar 

  • Johnson, D. W., and Spence, J. C. H. (1974) Determination of the single-scattering probability distribution from plural-scattering data. J. Phys. D (Appl. Phys.) 7, 771–780.

    Article  Google Scholar 

  • Johnson, D. E., Monson, K. L., Csillag, S., and Stern, E. A. (1981b) An approach to parallel-detection electron energy-loss spectrometry. In Analytical Electron Microscopy – 1981, ed. R. H. Geiss, San Francisco Press, San Francisco, CA, pp. 205–209.

    Google Scholar 

  • Jonas, P., and Schattschneider, P. (1993) The experimental conditions for Compton scattering in the electron microscope. J. Phys. Condens. Matter 5, 7173–7188.

    Article  CAS  Google Scholar 

  • Jones, W., Sparrow, T. G., Williams, B. G., and Herley, P. J. (1984) Evidence for the formation of single crystals of sodium metal during the decomposition of sodium aluminum hydride: An electron microscopic study. Mater. Lett. 2, 377–379.

    Article  CAS  Google Scholar 

  • Jouffrey, B., Kihn, Y., Perez, J. P., Sevely, J., and Zanchi, G. (1978) On chemical analysis of thin films by energy-loss spectroscopy. In Electron Microscopy – 1978, 9th Int. Cong., ed. J. M. Sturgess, Microscopical Society of Canada, Toronto, Vol. 3, pp. 292–303.

    Google Scholar 

  • Kaloyeros, A. E., Hoffman, M. P., Williams, W. S., Greene, A. E., and McMillan, J. A. (1988) Structural studies of amorphous titanium diboride thin films by extended x-ray-absorption fine-structure and extended electron-energy-loss fine-structure techniques. Phys. Rev. 38, 7333–7344.

    Article  CAS  Google Scholar 

  • Kambe, K., Krahl, D., and Herrmann, K.-H. (1981) Extended fine structure in electron energy-loss spectra of MgO crystallites. Ultramicroscopy 6, 157–162.

    CAS  Google Scholar 

  • Keast, V., Scott, A. J., Brydson, R., Williams, D. B., and Bruley, J. (2001) Electron energy-loss near-edge structure – a tool for the investigation of electronic structure on the nanometre scale. J. Microsc. 203, 135–175.

    Article  CAS  Google Scholar 

  • Kim, M. J., and Carpenter, R. W. (1990) Composition and structure of native oxide on silicon by high resolution analytical electron microscopy. J. Mater. Res. 5, 347–351.

    Article  CAS  Google Scholar 

  • Kim, M., Zuo, J. M., and Park, G. S. (2004) High-resolution strain measurement in shallow trench isolation structures using dynamic electron diffraction. Appl. Phys. Lett. 84, 2181–2183.

    Article  CAS  Google Scholar 

  • Kim, G., Sousa, A., Meyers, D., and Libera, M. (2008) Nanoscale composition of biphasic polymer nanocolloids in aqueous suspension. Microsc. Microanal. 14, 459–468.

    CAS  Google Scholar 

  • Kimoto, K., and Matsui, Y. (2003) Experimental investigation of phase contrast formed by inelastically scattered electrons. Ultramicroscopy 96, 335–342.

    Article  CAS  Google Scholar 

  • Kimoto, K., Sekiguchi, T., and Aoyama, T. (1997) Chemical shift mapping of Si L and K edges using spatially resolved EELS and energy-filtering TEM. J. Electron Microsc. 46, 369–374.

    CAS  Google Scholar 

  • Kimoto, K., Kobayashi, K., Aoyama, T., and Mitsui, Y. (1999) Analyses of composition and chemical shift of silicon oxynitride film using energy-filtering transmission electron microscope based spatially resolved electron energy loss spectroscopy. Micron 30, 121–127.

    Article  CAS  Google Scholar 

  • Kimoto, K., Asaka, T., Nagai, T., Saito, M., Matsui, Y., and Ishizuka, K. (2007) Element-selective imaging of atomic columns in a crystal using DSTEm and EELS. Nature 450, 702–704.

    Article  CAS  Google Scholar 

  • Klie, R. F., and Qiao, Q. (2010) Atomic-resolution annular bright-field and spectrum imaging of incommensirately-layered Ca3Co4O9. Microsc. Microanal. 16 (Suppl. 2), 86–87.

    Article  CAS  Google Scholar 

  • Klie, R. F., and Zhu, Y. (2005) Atomic resolution STEM analysis of defects and interfaces in ceramic materials. Micron 36, 1–13.

    Article  CAS  Google Scholar 

  • Klie, R. F., Su, H., Zhu, Y., Davenport, J. W., Idrobo, J.-C., Browning, N. D., and Nellist, P. D. (2003) Measuring the hole-state anisotropy in MgB2 by electron energy-loss spectroscopy. Phys. Rev. B 67, 144508 (7 pages).

    Article  CAS  Google Scholar 

  • Knotek, M. L. (1984) Stimulated desorption. Rep. Prog. Phys. 47, 1499–1561.

    Article  CAS  Google Scholar 

  • Kohl, H., and Rose, H. (1985) Theory of image formation by inelastically scattered electrons in the electron microscope. Adv. Electron. Electron Phys. 65, 175–200.

    Google Scholar 

  • Köpf-Maier, P. (1990) Intracellular localization of titanium within xenografted sensitive human tumors after treatment with the antitumor agent titanocene dichloride. J. Struct. Biol. 105, 35–45.

    Article  Google Scholar 

  • Krishnan, K. M. (1990) Iron L3,2 near-edge fine structure studies. Ultramicroscopy 32, 309–311.

    Article  CAS  Google Scholar 

  • Krivanek, O. L., and Paterson, J. H. (1990) ELNES of 3d transition-metal oxides. Ultramicroscopy 32, 313–318.

    Article  CAS  Google Scholar 

  • Krivanek, O. L., Ahn, C. C., and Wood, G. J. (1990) The inelastic contribution to high resolution images of defects. Ultramicroscopy 33, 177–185.

    Article  Google Scholar 

  • Krivanek, O. L., Mory, C., Tence, M., and Colliex, C. (1991a) EELS quantification near the single-atom detection level. Microsc. Microanal. Microstruct. 2, 257–267.

    Article  CAS  Google Scholar 

  • Kurata, H., Isoda, S., and Kobayashi, T. (1992) EELS study of radiation damage in chlorinated Cu-phthalocyanine and poly GeO-phthalocyanine. Ultramicroscopy 41, 33–40.

    Article  CAS  Google Scholar 

  • Kuzuo, R., Terauchi, M., Tanaka, M., Saito, Y., and Shinohara, H. (1991) High-resolution electron energy-loss spectra of solid C60. Jpn. J. Appl. Phys. 30, L1817–L1818.

    Article  CAS  Google Scholar 

  • Lakner, H., Maywald, M., Balk, L. J., and Kubalek, E. (1992) Characterization of AlGaAs/GaAs interfaces by EELS and high-resolution Z-contrast imaging in scanning transmission electron microscopy (STEM). Surf. Interface Anal. 19, 374–378.

    Article  CAS  Google Scholar 

  • Lamvik, M. K., Davilla, S. D., and Klatt, L. L. (1989) Substrate properties affect the mass loss rate in collodion at liquid helium temperature. Ultramicroscopy 27, 241–250.

    Article  CAS  Google Scholar 

  • Langmore, J. P., and Smith, M. F. (1992) Quantitative energy-filtered electron microscopy of biological molecules in ice. Ultramicroscopy 46, 349–373.

    Article  CAS  Google Scholar 

  • Langmore, J. P., Wall, J., and Isaacson, M. S. (1973) The collection of scattered electrons in dark field electron microscopy: 1. Elastic scattering. Optik 38, 335–350.

    Google Scholar 

  • Lazar, S., Botton, G. A., Wu, M.-Y., Tichelaar, F. D., and Zandbergen, H. W. (2003) Materials science applications of HREELS in near edge structure analysis and low-energy loss spectroscopy. Ultramicroscopy 96, 535–546.

    Article  CAS  Google Scholar 

  • Lazar, S., Shao, Y., Gunawan, L., Nechache, R., Pignolet, A., and Botton, G. A. (2010) Imaging, core-loss and low-loss electron energy-loss spectroscopy in aberration-corrected STEM. Microsc. Microanal. 16, 416–424.

    Article  CAS  Google Scholar 

  • Leapman, R. (1992) EELS quantitative analysis. In Transmission Electron Energy Loss Spectrometry in Materials Science, eds. M. M. Disko, and B. Fulz, The Minerals, Metals and Materials Society, Warrendale, PA, pp. 47–83.

    Google Scholar 

  • Leapman, R. D., and Andrews, S. B. (1992) Characterization of biological macromolecules by combined mass mapping and electron energy-loss spectroscopy. J. Microsc. 165, 225–238.

    CAS  Google Scholar 

  • Leapman, R. D., and Hunt, J. A. (1991) Comparison of detection limits for EELS and EDXS. Micros. Microanal. Microstruct. 2, 231–244.

    Article  CAS  Google Scholar 

  • Leapman, R. D., and Newbury, D. E. (1993) Trace element analysis at nanometer spatial resolution by parallel-detection electron energy-loss spectroscopy. Anal. Chem. 13, 2409–2414.

    Article  Google Scholar 

  • Leapman, R. D., and Ornberg, R. L. (1988) Quantitative electron energy loss spectroscopy in biology. Ultramicroscopy 24, 251–268.

    Article  CAS  Google Scholar 

  • Leapman, R. D., and Rizzo, N. W. (1999) Towards single atom analysis of biological structures. Ultramicroscopy 78, 251–268.

    Article  CAS  Google Scholar 

  • Leapman, R. D., and Sun, S. (1995) Cryo-electron energy loss spectroscopy: Observations on vitrified hydrated specimens and radiation damage. Ultramicroscopy 59, 71–79.

    Article  CAS  Google Scholar 

  • Leapman, R. D., and Swyt, C. R. (1983) Electron energy-loss imaging in the STEM Systematic and statistical errors. In Microbeam Analysis – 1983, ed. R. Gooley, San Francisco Press, San Francisco, CA, pp. 163–167.

    Google Scholar 

  • Leapman, R. D., Grunes, L. A., Fejes, P. L., and Silcox, J. (1981) Extended core-edge fine structure in electron energy-loss spectra. In EXAFS Spectroscopy, eds. B. K. Teo and C. D. Joy, Plenum, New York, NY, pp. 217–239.

    Google Scholar 

  • Leapman, R. D., Fiori, C. E., and Swyt, C. R. (1984a) Mass thickness determination by electron energy-loss for quantitative x-ray microanalysis in biology. J. Microsc. 133, 239–253.

    CAS  Google Scholar 

  • Leapman, R. D., Brink, J., and Chiu, W. (1993a) Low-dose thickness measurement of glucose-embedded protein crystals by electron energy loss spectroscopy and STEM dark-field imaging. Ultramicroscopy 52, 157–166.

    Article  CAS  Google Scholar 

  • Leapman, R. D., Hunt, J. A., Buchanan, R. A., and Andrews, S. B. (1993b) Measurement of low calcium concentrations in cryosectioned cells by parallel-EELS mapping. Ultramicroscopy 49, 225–234.

    Article  CAS  Google Scholar 

  • Leapman, R. D., Kocsis, E., Zhang, G., Talbot, T. L., and Laquerrieres, P. (2004) Three-dimensional distributions of elements in biological samples by energy-filtered electron tomography. Ultramicroscopy 100, 115–125.

    Article  CAS  Google Scholar 

  • Lee, C.-W., Ikematsu, Y., and Shindo, D. (2002) Measurement of mean free paths for inelastic ele tron scattering. J. Electron Microsc. 51, 143–806.

    Article  CAS  Google Scholar 

  • Lehmpfuhl, G., Krahl, D., and Swoboda, M. (1989) Electron microscope channelling imaging of thick specimens with medium-energy electrons in an energy-filter microscope. Ultramicroscopy 31, 161–168.

    Article  CAS  Google Scholar 

  • Lenz, F. (1954) Zur Streuung mittelschneller Elektronen in kleinste Winkel. Z. Naturforsch. 9A, 185–204.

    Google Scholar 

  • Levine, L. E., Gibbons, P. C., and Kelton, K. F. (1989) Electron energy-loss-spectroscopy studies of icosahedral plasmons. Phys. Rev. B 40, 9338–9341.

    Article  CAS  Google Scholar 

  • Li, P., Wang, X., Malac, M., Egerton, R., Meldrum, A., Liang, X., Lenz, F., and Wang, J. (2009) 3D imaging of Si and Er nanoclusters in Er dpoed SiO1.5 films by STEM tomography. Microsc. Microanal. 15 (Suppl. 2), 1256–1257.

    Article  Google Scholar 

  • Libera, M. R., and Egerton, R. F. (2010) Advances in the transmission electron microscopy of polymers. Polym. Rev.. 50, 321–339.

    Article  CAS  Google Scholar 

  • Lindner, Th., Sauer, H., Engel, W., and Kambe, K. (1986) Near-edge structure in electron-energy-loss spectra of MgO. Phys. Rev. B 33, 22–24.

    Article  CAS  Google Scholar 

  • Liu, Z. Q., McKenzie, D. R., Cockayne, D. J. H., and Dwarte, D. M. (1988) Electron diffraction study of boron- and phosphorus-doped hydrogenated amorphous silicon. Philos. Mag. B 57, 753–761.

    Article  CAS  Google Scholar 

  • Liu, D. R., Shinozaki, S. S., Hangas, J. W., and Maeda, K. (1991) Electron-energy-loss spectra of silicon carbide of 4H and 6H structures. In Microbeam Analysis – 1991, ed. D. G. Howitt, San Francisco Press, San Francisco, CA, pp. 447–449.

    Google Scholar 

  • Liu, C. P., Boothroyd, C. P., and Humphreys, C. J. (1999) Energy-filtered transmission lectron microscopy of multilayers in semiconductors. J. Microsc. 194, 58–70.

    Article  CAS  Google Scholar 

  • Loane, R. F., Kirkland, E. J., and Silcox, J. (1988) Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark-field STEm images. Acta Crystallogr. A 44, 912–927.

    Article  Google Scholar 

  • Longe, P., and Bose, S. M. (1993) Interpretation of the plasmon dispersion in the electron-energy-loss spectra of high-Tc superconductors. Phys. Rev. B 47, 11611–11614.

    Article  CAS  Google Scholar 

  • Lu, J., Loh, K. P., Huang, H., Chen, W., and Wee, A. T. S. (2009) Plasmon dispersion on epitaxial graphene studied using high-resolution electron energy-loss spectroscopy. Phys. Rev. B 80, 113410 (4 pages).

    Article  CAS  Google Scholar 

  • Luyten, W., Van Tenderloo, G., Fallon, P. J., and Woods, G. S. (1994) Electron microscopy and energy-loss spectroscopy of voidites in pure type IaB diamonds. Philos. Mag. A 69, 767–778.

    Article  CAS  Google Scholar 

  • MacKenzie, M., Craven, A. J., McComb, D. W., and De Gendt, S. (2006) Interfacial reactions in a HfO2/TiN/poly-Si gate stack. Appl. Phys. Lett. 88, 192112.

    Article  CAS  Google Scholar 

  • Malis, T., Cheng, S. C., and Egerton, R. F. (1988) EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Microsc. Tech. 8, 193–200.

    Article  CAS  Google Scholar 

  • Martin, J. M., and Mansot, J. L. (1991) EXELFS analysis of amorphous and crystalline silicon carbide. J. Microsc. 162, 171–178.

    CAS  Google Scholar 

  • Martin, J. M., Mansot, J. L., and Hallouis, M. (1989) Energy filtered electron microscopy (EFEM) of overbased reverse micelles. Ultramicroscopy 30, 321–327.

    Article  CAS  Google Scholar 

  • Mayer, J., Spence, J. C. H., and Möbus, G. (1991) Two-dimensional omega energy-filtered CBED on the new Zeiss EM912. In Proc. 49th Ann. Meet. Electron Microsc. Soc. Am., ed. G. W. Bailey, San Francisco Press, San Francisco, CA, pp. 786–787.

    Google Scholar 

  • McComb, D. W., and Howie, A. (1990) Characterization of zeolite catalysts using electron energy loss spectroscopy. Ultramicroscopy 34, 84–92.

    Article  CAS  Google Scholar 

  • McComb, D. W., Brydson, R., Hansen, P. L., and Payne, R. S. (1992) Qualitative interpretation of electron energy-loss near-edge structure in natural zircon. J. Phys.: Condens. Matter 4, 8363–8374.

    Article  CAS  Google Scholar 

  • McGibbon, A. J., and Brown, L. M. (1990) Microanalysis of nanometer-sized helium bubbles using parallel-detection EELS in a STEM. Trans. R. Microsc. Soc. 1, 23–26.

    CAS  Google Scholar 

  • McKenzie, D. R., Berger, S. D., and Brown, L. M. (1986) Bonding in a-Si1-x C x :H films studied by electron energy loss near edge structure. Solid State Commun. 59, 325–329.

    Article  CAS  Google Scholar 

  • Menon, N. K., and Krivanek, O. L. (2002) Synthesis of electron energy-loss spectra for the quantification of detection limits. Microsc. Microanal. 8, 203–215.

    Article  Google Scholar 

  • Metherell, A. J. F. (1967) Effect of diffuse scattering on the interpretation of measurement of the absorption of fast electrons. Philos. Mag. 15, 763–776.

    Article  CAS  Google Scholar 

  • Midgley, P. A., Saunders, M., Vincent, R., and Steeds, J. W. (1995) Energy-filtered convergent beam diffraction: Examples and future prospects. Ultramicroscopy 59, 1–13.

    Article  CAS  Google Scholar 

  • Mitchell, D. R. G., and Schaffer, B. (2005) Scripting customised microscopy tools for digital micrograph. Ultramicroscopy 103, 319–546.

    Article  CAS  Google Scholar 

  • Morrison, T. I., Brodsky, M. B., Zaluzec, N. J., and Sill, L. R. (1985) Iron d-band occupancy in amorphous Fe x Ge1−x . Phys. Rev. B 32, 3107–3111.

    Article  CAS  Google Scholar 

  • Mory, C., Kohl, H., Tencé, M., and Colliex, C. (1991) Experimental investigation of the ultimate EELS spatial resolution. Ultramicroscopy 37, 191–201.

    Article  Google Scholar 

  • Muller, D. A. (1999) Why changes in bond lengths and cohesion lead to core-level shifts in metals, and consequences for the spatial difference method. Ultramicroscopy 78, 163–174.

    Article  CAS  Google Scholar 

  • Muller, D. A., and Silcox, J. (1995a) Delocalization in inelastic scattering. Ultramicroscopy 59, 195–213.

    Article  CAS  Google Scholar 

  • Muller, D. A., and Silcox, J. (1995b) Radiation damage of Ni3Al by 100 keV electrons. Philos. Mag. 71, 1375–1387.

    Article  CAS  Google Scholar 

  • Muller, D. A., Tzou, Y., Raj, R., and Silcox, J. (1993) Mapping sp 2 and sp 3 states of carbon at sub-nanometre spatial resolution. Nature 366, 725–727.

    Article  CAS  Google Scholar 

  • Muller, D. A., Kourkoutis, L. F., Murfitt, M., Song, J. H., Hwang, H. Y., Silcox, J, Dellby, N., and Krivanek, O. L. (2008) Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076.

    Article  CAS  Google Scholar 

  • Muray, A., Scheinfein, M., Isaacson, M., and Adesida, I. (1985) Radiolysis and resolution limits of inorganic halide resists. J. Vac. Sci. Technol. B 3, 367–372.

    Article  CAS  Google Scholar 

  • Muto, S., Sasano, Y., Tatsumi, K., Sasaki, T., Horibuchi, K., Takeuchi, Y., and Ukyo, Y. (2009) Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries. II. Diagnostic analysis by electron microscopy and spectroscopy. J. Electrochem. Soc. 156, A371–A377.

    Article  CAS  Google Scholar 

  • Nagata, F., and Hama, K. (1971) Chromatic aberration on electron microscope image of biological sectioned specimen. J. Electron Microsc. 20, 172–176.

    Google Scholar 

  • Nelayah, J., Kociak, M., Stephan, O., Garcia de Abajo, F. J., Tence, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Marzan, L. M., and Colliex, C (2007) Mapping surface plasmons on a singlemetallic nanoparticle.metallic nanoparticle. Nat. Phys. 3, 348–353.

    Article  CAS  Google Scholar 

  • Okamoto, J. K., Pearson, D. H., Ahn, C. C., and Fulz, B. (1992) EELS analysis of the electronic structure and microstructure of metals. In Transmission Electron Energy Loss Spectrometry in Materials Science, eds. M. M. Disko, C. C. Ahn, and B. Fulz, The Minerals, Metals and Materials Society, Warrendale, PA, pp. 183–216.

    Google Scholar 

  • Oleshko, V. P., and Howe, J. M. (2007) In situ determination and imaging of physical properties of metastable and equilibrium precipitates using valence electron energy-loss spectroscopy and energy-filtering transmission electron microscopy. J. Appl. Phys. 101, 054308 (5 pages).

    Article  CAS  Google Scholar 

  • Ottensmeyer, F. P. (1984) Electron spectroscopic imaging: Parallel energy filtering and microanalysis in the fixed-beam electron microscope. J. Ultrastruct. Res. 88, 121–134.

    Article  CAS  Google Scholar 

  • Özel, M., Pauli, G., and Gelderblom, H. R. (1990) Electron spectroscopic imaging (ESI) of viruses using thin-section and immunolabelling preparations. Ultramicroscopy 32, 35–41.

    Article  Google Scholar 

  • Papworth, A. J., Kiely, C. J., Burden, A. P., Silva, S. R. P., and Amaratunga, G. A. J. (2000) Electron-energy-loss spectroscopy characterization of the sp 2 bonding fraction within carbon thin films. Phys. Rev. 62, 12628–12631.

    Article  CAS  Google Scholar 

  • Park, J., and Yang, M. (2009) Determination of complex dielectric functions at HfO2/Si interface by using STEM-VEELS. Micron 40, 365–369.

    Article  CAS  Google Scholar 

  • Park, J., Heo, S., Chung, J.-G., Kim, H., Lee, H., Kim, K., and Park, G.-S. (2009) Bandgap measurement of thin dielectric films using monochromated STEM-EELS. Ultramicroscopy 109, 1183–1188.

    Article  CAS  Google Scholar 

  • Payne, R. S., and Beamson, G. (1993) Parallel electron energy-loss spectroscopy and x-ray photoelectron spectroscopy of poly (ether ether ketone). Polymer 34, 1637–1644.

    Article  CAS  Google Scholar 

  • Pearson, D. H., Ahn, C. C., and Fulz, B. (1993) White lines and d-electron occupancies for the 3d and 4d transition metals. Phys. Rev. B 47, 8471–8478.

    Article  CAS  Google Scholar 

  • Pearson, D. H., Ahn, C. C., and Fulz, B. (1994) Measurements of 3d occupancy from Cu L 23 electron-energy-loss spectra of rapidly quenched CuZr, CuTi, CuPd, CuPt, and CuAu. Phys. Rev. B 50, 12969–12972.

    Article  CAS  Google Scholar 

  • Pennycook, S. J. (1981b) Study of supported ruthenium catalysts by STEM. J. Microsc. 124, 15–22.

    CAS  Google Scholar 

  • Pennycook, S. J. (1988) Delocalization corrections for electron channeling analysis. Ultramicroscopy 26, 239–248.

    Article  Google Scholar 

  • Pennycook, S. J., and Jesson, D. E. (1991) High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14–38.

    Article  Google Scholar 

  • Perez, J.-P., Sevely, J., and Jouffrey, B. (1977) Straggling of fast electrons in aluminum foils observed in high-voltage electron microscopy (0.3–1.2 MV). Phys. Rev. A 16, 1061–1069.

    Article  CAS  Google Scholar 

  • Pichler, T., Knupfer, M., Golden, M. S., Fink, J., Rinzler, A., and Smalley, R. E. (1998) Localized and delocalized electronic states in single-wall carbon nanotubes. Phys. Rev. Lett. 80, 4729–4732.

    Article  CAS  Google Scholar 

  • Pozsgai, I. (2007) Mass thickness determination and microanalysis of thin films in the TEM Revisited. Ultramicroscopy 107, 191–195.

    Article  CAS  Google Scholar 

  • Qian, M., Sarikaya, M., and Stern, E. A. (1995) Development of the EXELFS technique for high accuracy structural information. Ultramicroscopy 59, 137–147.

    Article  CAS  Google Scholar 

  • Qian, W., Tötdal, B., Hoier, R., and Spence, J. C. H. (1992) Channelling effects on oxygen-characteristic x-ray emission and their use as reference sites for ALCHEMI. Ultramicroscopy 41, 147–151.

    Article  Google Scholar 

  • Rafferty, B., and Brown, L. M. (1998) Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy. Phys. Rev. B 58, 10326–10337.

    Article  CAS  Google Scholar 

  • Rao, G. R., Wang, Z. L., and Lee, E. H. (1993) Microstructural effects on surface mechanical properties of ion-implanted polymers. J. Mater. Res. 8, 927–933.

    Article  CAS  Google Scholar 

  • Reed, B. W., and Sarikaya, M. (2001) Electronic properties of carbon nanotubes by transmission electron energy-loss spectroscopy. Phys. Rev. B 64, 195404 (13 pages).

    Article  CAS  Google Scholar 

  • Reimer, L. (1961) Veränderungen organischer Farbstoffe im Elektronenmikroskop. Z. Naturforsch. 16b, 166–170.

    CAS  Google Scholar 

  • Reimer, L. (1975) Review of the radiation damage problem of organic specimens in electron microscopy. In Physical Aspects of Electron Microscopy and Microbeam Analysis, eds. B. M. Siegel and D. R. Beaman, Wiley, New York, NY, pp. 231–245.

    Google Scholar 

  • Reimer, L., and Kohl, H. (2008) Transmission Electron Microscopy: Physics of Image Formation, 5th edition, Springer, New York, NY.

    Google Scholar 

  • Reimer, L., and Ross-Messemer, M. (1989) Contrast in the electron spectroscopic imaging mode of a TEM. I: Influence of energy-loss filtering on scattering contrast. J. Microsc. 155, 169–182.

    Google Scholar 

  • Reimer, L., and Ross-Messemer, M. (1990) Contrast in the electron spectroscopic imaging mode of the TEM. II: Z-ratio, structure-sensitive and phase contrast. J. Microsc. 159, 143–160.

    Google Scholar 

  • Reimer, L., Fromm, I., and Rennekamp, R. (1988) Operation modes of electron spectroscopic imaging and electron energy-loss spectroscopy in a transmission electron microscope. Ultramicroscopy 24, 339–354.

    Article  Google Scholar 

  • Reimer, L., Fromm, I., Hirsch, P., Plate, U., and Rennekamp, R. (1992) Combination of EELS modes and electron spectroscopic imaging and diffraction in an energy-filtering electron microscope. Ultramicroscopy 46, 335–347.

    Article  CAS  Google Scholar 

  • Rez, P. (1989) Inner-shell spectroscopy: An atomic view. Ultramicroscopy 28, 16–23.

    Article  Google Scholar 

  • Rez, P., Chiu, W., Weiss, J. K., and Brink, J. (1992) The thickness determination of organic crystals under low dose conditions using electron energy loss spectroscopy. Microsc. Res. Tech. 21, 166–170.

    Article  CAS  Google Scholar 

  • Rossouw, C. J., Turner, P. S., White, T. J., and O’Connor, A. J. (1989) Statistical analysis of electron channelling microanalytical data for the determination of site occupancies of impurities. Philos. Mag. Lett. 60, 225–232.

    Article  CAS  Google Scholar 

  • Rowley, P. N., Brydson, R., Little, J., and Saunders, S. R. J. (1990) Electron energy-loss studies of Fe-Cr-Mn oxide films. Philos. Mag. B 62, 229–238.

    Article  CAS  Google Scholar 

  • Rowley, P. N., Brydson, R., Little, J., Saunders, S. R. J., Sauer, H., and Engel, W. (1991) The effects of boron additions on the oxidation of Fe-Cr alloys in high temperature steam: Analytical results and mechanisms. Oxid. Met. 35, 375–395.

    Article  CAS  Google Scholar 

  • Salisbury, I. G., Timsit, R. S., Berger, S. D., and Humphreys, C. J. (1984) Nanometer scale electron beam lithography in inorganic materials. Appl. Phys. Lett. 45, 1289–1291.

    Article  CAS  Google Scholar 

  • Sasaki, T., Sawada, H., Hosokawa, F., Kohno, Y., Tomita, T., Kaneyama, T., Kondo, Y., Kimoto, K., Sato, Y., and Suenaga, K. (2010) Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun. J. Electron Microsc. 59 (Suppl.), S7–S13.

    CAS  Google Scholar 

  • Sato, Y., Terauchi, M., Saito, Y., Sato, K., and Saito, R. (2008b) Relation between peak structures of kiss functions of single double-walled carbon nanotubes and interband transition energies. J. Electron Microsc. 57, 129–132.

    Article  CAS  Google Scholar 

  • Sauer, H., Brydson, R., Rowley, P. N., Engel, W., and Thomas, J. M. (1993) Determination of coordinations and coordination-specific site occupancies by electron energy-loss spectroscopy: An investigation of boron-oxygen compounds. Ultramicroscopy 49, 198–209.

    Article  CAS  Google Scholar 

  • Schaffer, B., Riegler, K., Kothleitner, G., Grogger, W., and Hofer, F. (2008) Monochromated, spatially resolved electron energy-loss spectroscopic measurements of gold nanoparticles in the plasmon range. Micron 40, 269–273.

    Article  CAS  Google Scholar 

  • Schattschneider, P., and Exner, A. (1995) Progress in electron Compton scattering. Ultramicroscopy 59, 241–253.

    Article  CAS  Google Scholar 

  • Schattschneider, P., Nelhiebel, M., and Jouffrey, B. (1999) Density matrix of inelastically scattered fast electrons. Phys. Rev. B 59, 10959–10969.

    Article  CAS  Google Scholar 

  • Schattschneider, P., Nelhiebel, M., Souchay, H., and Jouffrey, B. (2000) The physical significance of the mixed dynamic form factor. Micron 31, 333–345.

    Article  CAS  Google Scholar 

  • Schenner, M., and Schattschneider, P. (1994) Spatial resolution in selected-area EELS. Ultramicroscopy 55, 31–41.

    Article  CAS  Google Scholar 

  • Schmid, H. K. (1995) Phase identification in carbon and BN systems by EELS. Microsc. Microanal. Microstruct. 6, 99–111.

    Article  CAS  Google Scholar 

  • Schröder, R. R., Hofmann, W., and Ménétret, J. F. (1990) Zero-loss energy filtering as improved imaging mode in cryoelectronmicroscopy of frozen-hydrated specimens. J. Struct. Biol. 105, 28–34.

    Article  Google Scholar 

  • Seaton, M. J. (1962) The impact parameter method for electron excitation of optically allowed atomic transitions. Proc. Phys. Soc. 79, 1105–1117.

    Article  CAS  Google Scholar 

  • Servanton, G., and Pantel, R. (2010) Arsenic dopant mapping in state-of-the-art semiconductor devices using electron energy-loss spectroscopy. Micron 41, 118–122.

    Article  CAS  Google Scholar 

  • Shuman, H., and Somlyo, A. P. (1987) Electron energy loss analysis of near-trace-element concentrations of calcium. Ultramicroscopy 21, 23–32.

    Article  CAS  Google Scholar 

  • Shuman, H., Somlyo, A. V., and Somlyo, A. P. (1976) Quantitative electron-probe micro-analysis of biological thin sections: Methods and validity. Ultramicroscopy 1, 317–339.

    Article  CAS  Google Scholar 

  • Shuman, H., Somlyo, A. V., Somlyo, A. P., Frey, T., and Safer, D. (1982) Energy-loss imaging in biology. In 40th Ann. Proc. Electron Microsc. Soc. Am., ed. G. W. Bailey, Claitor’s Publishing, Baton Rouge, LA, pp. 416–419.

    Google Scholar 

  • Shuman, H., Chang, C.-F., and Somlyo, A. P. (1986) Elemental imaging and resolution in energy-filtered conventional electron microscopy. Ultramicroscopy 19, 121–134.

    Article  CAS  Google Scholar 

  • Skiff, W. M., Tsai, H. L., and Carpenter, R. W. (1986) Electron energy loss microspectroscopy: Small particles in silicon. In Mat. Res. Soc. Symp. Proc., Materials Research Society, Pittsburgh, PA, Vol. 59, pp. 241–247.

    Google Scholar 

  • Sklad, P. S., Angelini, P., and Sevely, J. (1992) Extended electron energy-loss fine structure analysis of amorphous Al2O3. Philos. Mag. A 65, 1445–1461.

    Article  CAS  Google Scholar 

  • Sorber, C. W. J., van Dort, J. B., Ringeling, P. C., Cleton-Soeteman. M. I., and de Bruijn, W. C. (1990) Quantitative energy-filtered image analysis in cytochemistry. II: Morphometric analysis of element-distribution images. Ultramicroscopy 32, 69–79.

    Article  CAS  Google Scholar 

  • Spence, J. C. H. (1980) The use of characteristic-loss energy selected electron diffraction patterns for site symmetry determination. Optik 57, 451–456.

    Google Scholar 

  • Spence, J. C. H. (1981) The crystallographic information in localized characteristic-loss electron images and diffraction patterns. Ultramicroscopy 7, 59–64.

    Article  CAS  Google Scholar 

  • Spence, J. C. H. (1988) Inelastic electron scattering. In High-Resolution Transmission Electron Microscopy and Associated Techniques, eds. P. Buseck, J. Cowley, and L. Eyring, Oxford University Press, New York, NY, pp. 129–189.

    Google Scholar 

  • Spence, J. C. H., and Lynch, J. (1982) STEM microanalysis by transmission electron energy-loss spectroscopy in crystals. Ultramicroscopy 9, 267–276.

    Article  CAS  Google Scholar 

  • Spence, J. C. H., and Taftø, J. (1983) ALCHEMI: A new technique for locating atoms in small crystals. J. Microsc. 130, 147–154.

    CAS  Google Scholar 

  • Spence, J. C. H., Kuwabara, M., and Kim, Y. (1988) Localization effects on quantification in axial and planar ALCHEMI. Ultramicroscopy 26, 103–112.

    Article  Google Scholar 

  • Stephan, O., Taverna, D., Kociak, M., Suenaga, K., Henrard, L., and Colliex, C. (2002) Dielectric response of isolated carbon nanotubes by spatially resolved electron energy-loss spectroscopy: From multiwalled to single-walled nanotubes. Phys. Rev. B 66, 155422 (6 pages).

    Article  CAS  Google Scholar 

  • Stern, E. A. (1982) Comparison between electrons and x-rays for structure determination. Optik 61, 45–51.

    CAS  Google Scholar 

  • Stobbs, W. M., and Saxton, W. O. (1988) Quantitative high resolution transmission electron microscopy: The need for energy filtering and the advantages of energy-loss imaging. J. Microsc. 151, 171–184.

    CAS  Google Scholar 

  • Stöckli, T., Bonard, J.-M, Stadelmann, P.-A., and Châtelain, A. (1997) EELS investigations of plasmon excitations in aluminum nanospheres and carbon nanotubes. Z. Phys. D 40, 425–428.

    Article  Google Scholar 

  • Stöckli, T., Bonard, J.-M, Stadelmann, P.-A., Châtelain, A., Wang, Z. L., and Stadelmann, P. (1998) Plasmon excitations in graphitic carbon spheres. Phys. Rev. B 57, 15599–15612.

    Article  Google Scholar 

  • Stöger-Pollach, M. (2008) Optical properties and bandgaps from low loss EELS: Pitfalls and solutions. Micron 39, 1092–1110.

    Article  CAS  Google Scholar 

  • Stöger-Pollach, M., Treiber, C. D., Resch, G. P., Keays, D. A., and Ennen, I. (2011) Real space maps of magnetic properties in Magnetospirillum magnetotacticum using EMCD. Micron 42, 461–470.

    Article  CAS  Google Scholar 

  • Stohr, J., and Outka, D. A. (1987) Near edge x-ray absorption fine-structure studies of molecules and molecular chains bonded to surfaces. J. Vac. Sci. Technol. A 5, 919–926.

    Article  Google Scholar 

  • Strutt, A. J., and Williams, D. B. (1993) Chemical analysis of Cu-Be-Co alloys using quantitative parallel electron-energy-loss spectroscopy. Philos. Mag. A 67, 1007–1020.

    Article  CAS  Google Scholar 

  • Suenaga, K., Tencé, T., Mory, C., Colliex, C., Kato, H., Okazaki, T., Shinohara, H., Hiraahara, K., Bandow, S., and Iijima, S. (2000) Element selective single atom imaging. Science 290, 2280–2282.

    Article  CAS  Google Scholar 

  • Sun, S., Shi, S., and Leapman, R. (1993) Water distributions of hydrated biological specimens by valence electron energy loss spectroscopy. Ultramicroscopy 50, 127–139.

    Article  CAS  Google Scholar 

  • Sun, S. Q., Shi, S.-L., Hunt, J. A., and Leapman, R. D. (1995) Quantitative water mapping of cryosectioned cells by electron energy loss spectroscopy. J. Microsc. 177, 18–30.

    CAS  Google Scholar 

  • Taft, E. A., and Philipp, H. R. (1965) Optical properties of graphite. Phys. Rev. A 138, 197–202.

    Article  CAS  Google Scholar 

  • Taftø, J., and Krivanek, O. L. (1981) The combined effect of channelling and blocking in electron energy-loss spectroscopy. In 39th Ann. Proc. Electron Microsc. Soc. Am., ed. G. W. Bailey, Claitor’s Publishing, Baton Rouge, LA, pp. 190–191.

    Google Scholar 

  • Taftø, J., and Krivanek, O. L. (1982a) Characteristic energy-loss from channeled 100 keV electrons. Nucl. Instrum. Methods 194, 153–158.

    Article  Google Scholar 

  • Taftø, J., and Krivanek, O. L. (1982b) Site-specific valence determination by electron energy-loss spectroscopy. Phys. Rev. Lett. 48, 560–563.

    Article  Google Scholar 

  • Taftø, J., and Zhu, J. (1982) Electron energy-loss near edge structure (ELNES), a potential technique in the studies of local atomic arrangements. Ultramicroscopy 9, 349–354.

    Article  Google Scholar 

  • Thomas, G. J. (1981) Study of hydrogen and helium in metals by electron energy-loss spectroscopy. In Analytical Electron Microscopy – 1981, ed. R. H. Geiss, San Francisco Press, San Francisco, CA, pp. 195–197.

    Google Scholar 

  • Thomas, L. E. (1982) High spatial resolution in STEM x-ray microanalysis. Ultramicroscopy 9, 311–318.

    Article  CAS  Google Scholar 

  • Thomas, L. E. (1984) Microanalysis of light elements by simultaneous x-ray and electron spectrometry. In Analytical Electron Microscopy – 1984, eds. D. B. Williams and D. C. Joy, San Francisco Press, San Francisco, CA, pp. 358–362.

    Google Scholar 

  • Thust, A. (2009) High-resolution transmission electron microscopy on an absolute contrast scale. Phys. Rev. Lett. 102, 220801 (4 pages).

    Article  CAS  Google Scholar 

  • Titchmarsh, J. M. (1989) Comparison of high spatial resolution in EDX and EELS analysis. Ultramicroscopy 28, 347–351.

    Article  CAS  Google Scholar 

  • Treacy, M. M. J., Howie, A., and Wilson, C. J. (1978) Z contrast of platinum and palladium catalysts. Philos. Mag. A 38, 569–585.

    Article  CAS  Google Scholar 

  • Tsai, J.-S., Kai, J.-J., Chang, L., and Chen, F.-R. (2004) Bandgap mapping for III-V quantum well by electron spectroscopy imaging. Acta Crystallogr. A 58, 514–525.

    Google Scholar 

  • Tsuda, K., Ogata, Y., Takagi, K., Hashimoto, T., and Tanaka, M. (2002) Refinement of crystal structural parameters and charge density using convergent-beam electron diffraction – the rhombohedral phase of LaCrO3. Acta Crystallogr. A 58, 514–525.

    Article  CAS  Google Scholar 

  • Turner, P. S., Bullough, T. J., Devenish, R. W., Maher, D. M., and Humphreys, C. J. (1990) Nanometer hole formation in MgO using electron beams. Philos. Mag. Lett. 61, 181–193.

    Article  CAS  Google Scholar 

  • Turowski, M. A., and Kelly, T. F. (1992) Profiling of the dielectric function across Al/SiO2/ Si heterostructures with electron energy loss spectroscopy. Ultramicroscopy 41, 41–54.

    Article  CAS  Google Scholar 

  • Tzou, Y., Bruley, J., Ernst, F., Ruhle, M., and Raj, R. (1994) TEM study of the structure and chemistry of diamond/silicon interface. J. Mater. Res. 9, 1566–1572.

    Article  CAS  Google Scholar 

  • Ugarte, D., Colliex, C., and Trebbia, P. (1992) Surface- and interface-plasmon modes on small semiconducting spheres. Phys. Rev. B 45, 4332–4343.

    Article  Google Scholar 

  • Upton, M. H, Klie, R. F., Hill, J. P., Gog, T., Casa, D., Ku, W., Zhu, Y., Sfeir, M. Y., Misewich, J., Eres, G., and Lowndes, D. (2009) Effect of number of walls on plasmon behavior in carbon nanotubes. Carbon 47, 162–168.

    Article  CAS  Google Scholar 

  • van Aken, P. A., Sigle, W., Koch, C. T., Ogut, B., Nehayah, J., and Gu, L. (2010) Low-loss EFTEM imaging of surface plasmon resonances in Ag nanostructures. Microsc. Microanal. 17 (Suppl. 2), 1438–1439.

    Article  CAS  Google Scholar 

  • Varela, M., Findlay, S. D., Lupini, A. R., Christen, H. M., Borisevich, A. Y., Dellby, N., Krivanek, O. L., Nellist, P. D., Oxley, M. P., Allen, L. J., and Pennycook, S. J. (2004) Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (4 pages).

    Article  CAS  Google Scholar 

  • Vasudevan, S., Rayment, T., Williams, B. G., and Holt, R. (1984) The electronic structure of graphite from Compton profile measurements. Proc. R. Soc. Lond. A391, 109–124.

    Google Scholar 

  • Verbeeck, J., Tian, H., and Schattschneider, P. (2010) Production and application of electron vortex beams. Nature 467, 301–304.

    Article  CAS  Google Scholar 

  • Wagner, H.-J. (1990) Contrast tuning by electron spectroscopic imaging of half-micrometer-thick sections of nervous tissue. Ultramicroscopy 32, 42–47.

    Article  Google Scholar 

  • Wall, J. S., and Hainfeld, J. F. (1986) Mass mapping with the scanning transmission electron microscope. Ann. Rev. Biophys. Biophys. Chem. 15, 355–376.

    Article  CAS  Google Scholar 

  • Wang, Z. L. (1993) Electron reflection, diffraction and imaging of bulk crystal surfaces in TEM and STEM. Rep. Prog. Phys. 56, 997–1065.

    Article  CAS  Google Scholar 

  • Wang, Z. L., and Cowley, J. M. (1994) Electron channelling effects at high incident angles in convergent beam reflection diffraction. Ultramicroscopy 55, 228–240.

    Article  CAS  Google Scholar 

  • Wang, Y.-Y., Ho, R., Shao, Z., and Somlyo, A. P. (1992) Optimization of quantitative electron energy-loss spectroscopy in the low loss region: Phosphorus L-edge. Ultramicroscopy 41, 11–31.

    Article  CAS  Google Scholar 

  • Wang, Y. Y., Zhang, H., Dravid, V. P., Shi, D., Hinks, D. G., Zheng, Y., and Jorgensen, J. D. (1993) Evolution of the low-energy excitations and dielectric function of Ba1−x K x BiO3. Phys. Rev. B 47, 14503–14507.

    Article  CAS  Google Scholar 

  • Wang, Y. Y., Cheng, S. C., Dravid, V. P., and Zhang, F. C. (1995b) Symmetry of electronic structure of BaTiO3 via momentum-transfer resolved electron energy loss spectroscopy. Ultramicroscopy 59, 109–119.

    Article  CAS  Google Scholar 

  • Wang, Z. L., Colliex, C., Paul-Boncour, V., Percheron-Guegan, A., Archard, J. C., and Barrault, J. (1987) Electron microscopy characterization of lanthanum-cobalt intermetallic catalysts. J. Catalysis 105, 120–143.

    Article  CAS  Google Scholar 

  • Wang, Z. L., Bentley, J., and Evans, N. D. (1999) Mapping the valance states of transition-metal elements using energy-filtered transmission electron microscopy. J. Phys. Chem. B 103, 751–753.

    Article  CAS  Google Scholar 

  • Watanabe, M., Williams, D. B., and Tomokiyo, Y. (2003) Comparison of detectability limits for elemental mapping by EFTEM and STEM-XEDS. Micron 34, 173–183.

    Article  CAS  Google Scholar 

  • Weiss, J. K., and Carpenter, R. W. (1992) Factors limiting the spatial resolution and sensitivity of EELS microanalysis in a STEM. Ultramicroscopy 40, 339–351.

    Article  Google Scholar 

  • Whitlock, R. R., and Sprague, J. A. (1982) TEM imaging and EELS measurement of mass thickness variations in thick foils. In 40th Ann. Proc. Electron Microsc. Soc. Am., ed. G. W. Bailey, Claitor’s Publishing, Baton Rouge, LA, pp. 504–505.

    Google Scholar 

  • Williams, D. B., and Edington, J. W. (1976) High resolution microanalysis in materials science using electron energy-loss measurements. J. Microsc. 108, 113–145.

    CAS  Google Scholar 

  • Williams, B. G., and Bourdillon, A. J. (1982) Localised Compton scattering using energy-loss spectroscopy. J. Phys. C (Solid-State Phys.) 15, 6881–6890.

    Article  CAS  Google Scholar 

  • Williams, B. G., Parkinson, G. M., Eckhardt, C. J., and Thomas, J. M. (1981) A new approach to the measurement of the momentum densities in solids using an electron microscope. Chem. Phys. Lett. 78, 434–438.

    Article  CAS  Google Scholar 

  • Williams, B. G., Sparrow, T. G., and Egerton, R. F. (1984) Electron Compton scattering from solids. Proc. R. Soc. Lond. A393, 409–422.

    Google Scholar 

  • Woo, T., and Carpenter, G. J. C. (1992) EELS characterization of zirconium hydrides. Microsc. Microanal. Microstruct. 3, 35–44.

    Article  CAS  Google Scholar 

  • Wu, Y. H., Yu, T., and Shen, Z. X. (2010) Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J. Appl. Phys. 108, 071301 (33 pages).

    Article  CAS  Google Scholar 

  • Xu, P., Loane, R. F., and Silcox, J. (1991) Energy-filtered convergent-beam electron diffraction in STEM. Ultramicroscopy 38, 127–133.

    Article  Google Scholar 

  • Yakovlev, S., Misra, M., Shi, S., Firlar, E., and Libera, M. (2010) Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy. Ultramicroscopy 110, 866–876.

    Article  CAS  Google Scholar 

  • Yamada, K., Sato, K., and Boothroyd, C. B. (1992) Quantification of nitrogen in solution in stainless steels using parallel EELS. Mater. Trans. 33, 571–576.

    CAS  Google Scholar 

  • Yang, Y.-Y., and Egerton, R. F. (1995) Tests of two alternative methods for measuring specimen thickness in a transmission electron microscope. Micron 26, 1–5.

    Article  Google Scholar 

  • Yuan, J., and Brown, L. M. (2000) Investigation of atomic structures of diamond-like amorphous carbon by electron energy loss spectroscopy. Micron 31, 515–526.

    Article  CAS  Google Scholar 

  • Yuan, J., Brown, L. M., and Liang, W. Y. (1988) Electron energy-loss spectroscopy of the high-temperature superconductor Ba2 YCu3O7−x . J. Phys. C 21, 517–526.

    Article  CAS  Google Scholar 

  • Yuan, J., Brown L. M., Liang, W. Y., Liu, R. S., and Edwards, P. P. (1991) Electron-energy-loss studies of core edges in Tl0.5Pb0.5Ca1−x Y x Sr2Cu2O7−δ . Phys. Rev. B 43, 8030–8037.

    Article  CAS  Google Scholar 

  • Yuan, J., Saeed, A., Brown, L. M., and Gaskell, P. H. (1992) The structure of highly tetrahedral amorphous diamond-like carbon. III: Study of inhomogeneity by high-resolution inelastic scanning transmission electron microscopy. Philos. Mag. B 66, 187–197.

    CAS  Google Scholar 

  • Yurtsever, A., Weyland, M., and Muller, D. A. (2006) Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography. Appl. Phys. Lett. 89, 151920 (3 pages).

    Article  CAS  Google Scholar 

  • Zaluzec, N. J. (1980a) Materials science applications of analytical electron microscopy. In 38th Ann. Proc. Electron Microsc. Soc. Am., ed. G. W. Bailey, Claitor's Publishing, Baton Rouge, LA, pp. 98–101.

    Google Scholar 

  • Zaluzec, N. J. (1992) Electron energy loss spectroscopy of advanced materials. In Transmission Electron Energy Loss Spectroscopy in Materials Science, eds. M. M. Disko, C. C. Ahn, and B. Fulz, The Metals Society, Warrendale, PA, pp. 241–266.

    Google Scholar 

  • Zanetti, R., Bleloch, A. L., Grimshaw, M. P., and Jones, G. A. C. (1994) The effect of grain size on fluorine gas bubble formation on calcium fluoride during electron-beam irradiation. Philos. Mag. Lett. 69, 285–290.

    Article  CAS  Google Scholar 

  • Zeitler, E. (1982) Radiation damage in beam-sensitive material. In Development in Electron Microscopy and Analysis 1979, ed. M. J. Goringe, Inst. Phys. Conf. Ser. No. 61, I.O.P., Bristol, pp. 1–6.

    Google Scholar 

  • Zhao, L., Wang, Y. Y., Ho, R., Shao, Z., Somlyo, A. V., and Somlyo, A. P. (1993) Thickness determination of biological thin specimens by multiple-least-squares fitting of the carbon K-edge in the electron energy-loss spectrum. Ultramicroscopy 48, 290–296.

    Article  CAS  Google Scholar 

  • Zhao, Y., Feltes, T. E., Regalbuto, J. R., Meyer, R. J., and Klie, R. F. (2010) In-situ electron energy-loss spectroscopy study of metallic Co and CoO oxides. J. Appl. Phys. 108, 063704 (7 pages).

    Article  CAS  Google Scholar 

  • Zhu, Y., Egerton, R. F., and Malac, M. (2001) Concentration limits for the measurement of boron by electron energy-loss spectroscopy and electron-spectroscopic imaging. Ultramicroscopy 87, 135–145.

    Article  CAS  Google Scholar 

  • Zhu, Y., Wang, Z. L., and Suenaga, M. (1993) Grain-boundary studies by the coincident-site lattice model and electron-energy-loss spectroscopy of the oxygen K edge in YBa2Cu3O7-δ . Philos. Mag. A 67, 11–28.

    Article  CAS  Google Scholar 

  • Spence, J. C. H., and Zuo, J. M. (1992) Electron Microdiffraction, Plenum, New York, NY.

    Google Scholar 

  • Zuo, J. M. (2004) Measurements of electron densities in solids: A real-space view of electronic structure and bonding in inorganic crystals. Rep. Prog. Phys. 67, 2053–2103.

    Article  CAS  Google Scholar 

  • Ahn, C. C., ed. (2004) Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas, Wiley, New York, NY.

    Google Scholar 

  • Baker, T. N., Craven, A. J., Duckworth, S. P., and Glas, F. (1982) Microanalysis of carbides in ferritic steels. In Developments in Electron Microscopy and Analysis, Inst. Phys. Conf. Ser. No. 61, I.O.P., Bristol, pp. 239–242.

    Google Scholar 

  • Bonney, L. A. (1990) Measurement of the inelastic mean free path by EELS analyses of submicron spheres. In Proc. XIIth Int. Cong. Electron Microsc., San Francisco Press, San Francisco, CA, pp. 74–75.

    Google Scholar 

  • Boothroyd, C. B., Sato, K., and Yamada, K. (1990) The detection of 0.5 at% boron in Ni3Al using parallel energy loss spectroscopy. In Proc. XIIth Int. Cong. Electron Microsc., San Francisco Press, San Francisco, CA, Vol. 2, pp. 80–81.

    Google Scholar 

  • Bradley, C. R. (1988) Calculations of atomic sputtering and displacement cross-sections in solid elements by electrons with energies from threshold to 1.5 MV. Argonne National Laboratory Report ANL-88-48.

    Google Scholar 

  • Browning, N. D., Yuan, Y., and Brown, L. M. (1991a) Investigation of fluctuations on oxygen stoichiometry near grain boundaries in ion-beam thinned YBa2Cu3O7−δ by scanning transmission electron microscopy. In Inst. Phys. Conf. Ser. No. 119 (EMAG 91), Institute of Physics, Bristol, pp. 283–286.

    Google Scholar 

  • Brydson, R., Hansen, P. L., and McComb, D. W. (1992a) p → p-like transitions in tetrahedrally coordinated cation L23 ELNES. In Electron Microscopy 1992, Proc. EUREM, Granada, Vol. 1, pp. 251–252.

    Google Scholar 

  • Colliex, C., Manoubi, T., Gasgnier, M., and Brown, L. M. (1985) Near-edge fine structures on EELS core-loss edges. In Scanning Electron Microscopy – 1985, SEM Inc., A. M. F. O'Hare, IL, Part 2, pp. 489–512.

    Google Scholar 

  • Craven, A. J., and Colliex, C. (1977) The effect of energy-loss on phase contrast. In Developments in Electron Microscopy and Analysis, Inst. Phys. Conf. Ser. No. 36, pp. 271–274.

    Google Scholar 

  • Du Chesne, A., Lieser, G., and Wegner, G. (1992) ESI for investigation of polymer microdomain morphology. In Electron Microscopy 1992, Proc. EUREM, Granada, Vol. 1, pp. 255–256.

    Google Scholar 

  • Egerton, R. F. (1992a) A data base for energy-loss cross sections and mean free paths. In 50th Ann. Proc. Electron Microsc. Soc. Am., San Francisco Press, San Francisco, CA, pp. 1264–1265.

    Google Scholar 

  • Evans, N. D., Zinkle, S. J., Bentley, J., and Kenik, E. A. (1991) Quantification of metallic aluminum profiles in Al+ implanted MgAl2O4 spinel by electron energy loss spectroscopy. In Microbeam Analysis – 1991, San Francisco Press, San Francisco, CA, pp. 439–440.

    Google Scholar 

  • Evans et al. (1999) Microbeam Analysis – 1999, p. 440

    Google Scholar 

  • Fink, J. (1989) Recent developments in energy-loss spectroscopy. In Advances in Physics and Electron Physics, Academic, London, Vol. 75, pp. 121–232.

    Google Scholar 

  • Fraser, H. L. (1978) Elemental analysis of second-phase carbides using electron energy-loss spectroscopy. In Scanning Electron Microscopy, SEM Inc., A. M. F. O'Hare, Chicago, IL, Part 1, pp. 627–632.

    Google Scholar 

  • Goldstein, J. I., Costley, J. L., Lorimer, G. W., and Reed, S. J. B. (1977) Quantitative x-ray analysis in the electron microscope. In Scanning Electron Microscopy, Part 1, pp. 315–324.

    Google Scholar 

  • Hojou, K., Furuno, S., Kushita, K. N., Otsu, H., Izui, K., Ueki, Y., and Kamino, T. (1992) Electron energy-loss spectroscopy of SiC crystals implanted with hydrogen and helium dual-ion beam. In Electron Microscopy 1992, Proc. EUREM 92, Granada, Vol. 1, pp. 261–262.

    Google Scholar 

  • Humphreys, C. J., Eaglesham, D. J., Alford, N. M., Harmer, M. A., and Birchall, J. D. (1988) High temperature superconductors. In Inst. Phys. Conf. Ser. No. 93, IOP, Bristol, Vol. 2, pp. 217–222.

    Google Scholar 

  • Humphreys, C. J., Bullough, T. J., Devenish, R. W., Maher, D. M., and Turner, P. S. (1990) Electron beam nano-etching in oxides, fluorides, metals and semiconductors. In Scanning Microscopy Supplement, Scanning Microscopy International, Chicago, IL, Vol. 4, pp. 185–192.

    Google Scholar 

  • Jiang, X. G., and Ottensmeyer, F. P. (1994) Molecular microanalysis: Imaging with low-energy-loss electrons. In Electron Microscopy 1994, Proc. 13th Int. Cong. Electron Microsc., Paris, Vol. 3, pp. 781–782.

    Google Scholar 

  • Jonas, P., Schattschneider, P., and Su, D. S. (1992) Directional Compton profiles of silicon. In Electron Microscopy, EUREM 92, Granada, Vol. 1, pp. 265–266.

    Google Scholar 

  • Joy, D. C., and Maher, D. M. (1977) Sensitivity limits for thin specimen x-ray analysis. In Scanning Electron Microscopy, Part 1, pp. 325–334.

    Google Scholar 

  • Lavergne, J.-L., Gimenez, C., Friour, G., and Martin, J. M. (1994) Chemical mapping of silver halide microcrystals: Use of imaging EELS methods. In Proc ICEM-13, Les Editions de Physique, Les Ulis, Vol. 1, pp. 692–630.

    Google Scholar 

  • Leapman, R. D. (1984) Electron energy-loss microspectroscopy and the characterization of solids. In Electron Beam Interactions with Solids, SEM Inc., A. M. F. O’Hare, IL, pp. 217–233.

    Google Scholar 

  • More, A. P., McGibbon, A. J., and McComb, D. W. (1991) An analysis of polymers in STEM using PEELS. In Inst. Phys. Conf. Ser. No. 119 (EMAG 91), I.O.P., Bristol, pp. 353–356.

    Google Scholar 

  • Oen, O. S. (1973) Cross sections for atomic displacements in solids by fast electrons. Oak Ridge National Laboratory report ORNL-4897.

    Google Scholar 

  • Ottensmeyer, F. P., and Arsenault, A. L. (1983) Electron spectroscopic imaging and Z-contrast in tissue sections. In Scanning Electron Microscopy/1983, Part IV, pp. 1867–1875.

    Google Scholar 

  • Reichelt, R., Carlemalm, E., and Engel, A. (1984) Quantitative contrast evaluation for different scanning transmission electron microscope imaging modes. In Scanning Electron Microscopy/1984. Part III, pp. 1011–1021.

    Google Scholar 

  • Riegler, K., and Kothleitner, G. (2010) EELS detection limits revisited: Ruby – a case study. Ultramicroscopy 1004–1013.

    Google Scholar 

  • Sevely, J., Garg, R. K., Zanchi, G., and Jouffrey, B. (1985) Observation de modulations EXELFS en spectroscopie de pertes d'énergie d'électrons à haute tension. In Proc. Réunion Annuelle SFME, Strasbourg, France.

    Google Scholar 

  • Shao, Y., Lazar, S., Hughes, R. A., Preston, J. S., and Botton, G. A. (2011) Comprehensive study of Ba0.4Sr0.6Ti0.5Nb0.5O3-MgAl2O4 metal-insulator interface at atomic scale: STEM imaging, EELS core-loss spectroscopy and first principle calculation. Submitted for publication.

    Google Scholar 

  • Sparrow, T. G., Williams, B. G., Thomas, J. M., Jones, W., Herley, P. J., and Jefferson, D. A. (1983) Plasmon spectroscopy as an ultrasensitive microchemical tool. J. Chem. Soc. Chem. Commun. 1432–1435.

    Google Scholar 

  • Stephens, A. P., and Brown, L. M. (1980) Observation by scanning transmission electron microscopy of characteristic electron energy-losses due to hydrogen in transition metals. In Developments in Electron Microscopy and Analysis, Int. Phys. Conf. Ser. No. 52, pp. 341–342.

    Google Scholar 

  • Stephens, A. P., and Brown, L. M. (1981) EXELFS in graphitic boron nitride. In Quantitative Microanalysis with High Spatial Resolution, The Metals Society, London, pp. 152–158.

    Google Scholar 

  • Taftø, J., Krivanek, O. L., Spence, J. C. H., and Honig, J. M. (1982) Is your spinel normal or inverse? In Electron Microscopy – 1982, 10th Int. Cong., Deutsche Gesellschaft für Elektronenmikroskopie, Vol. 1, pp. 615–616.

    Google Scholar 

  • Takeda, S., Terauchi, M., Tanaka, M., and Kohyama, M. (1994) Line defect configuration incorporated with self-interstitials in Si: A combined study by HRTEM, EELS and electronic calculation. In Electron Microscopy 1994, Proc. 13th Int. Cong. Electron Microsc., Paris, Vol. 3, pp. 567–568.

    Google Scholar 

  • Terauchi, M., Kuzuo, R., Tanaka, M., Tsuno, K., Saito, Y., and Shinohara, H. (1994) High resolution electron energy-loss study of solid C60, C70, C84 and carbon nanotubes. In Electron Microscopy 1994, Proc. 13th Int. Cong. Electron Microsc., Paris, Vol. 2a, pp. 333–334.

    Google Scholar 

  • Tremblay, S., and L'Esperance, G. (1994) Volume fraction determination of secondary phase particles in aluminum thin foils with plasmon energy shift imaging. In Electron Microscopy 1994, Proc. ICEM-13, Paris, Vol. 1, pp. 627–628.

    Google Scholar 

  • Wang, F., Graetz, J., Moreno, S., Wu, L., Volkov, V., and Zhu, Y. (2010b) Chemical distribution and bonding state of lithium in intercalated graphite with optimized electron energy-loss spectroscopy. ACS Nano.

    Google Scholar 

  • Williams, D. B., and Hunt, J. A. (1992) Applications of electron energy loss spectrum imaging. In Electron Microscopy 1992, Proc. EUREM 92, Granada, Vol. 1, pp. 243–247.

    Google Scholar 

  • Williams, B. G., Sparrow, T. G., and Thomas, J. M. (1983) Probing the structure of an amorphous solid: Proof from Compton scattering measurements that amorphous carbon is predominantly graphitic. J. Chem. Soc. Chem. Commun. 1434–1435.

    Google Scholar 

  • Wong, K. (1994) EELS Study of Bulk Nickel Silicides and the NiS2/Si(111) Interface. Ph.D. Thesis, Cornell University.

    Google Scholar 

  • Zaluzec, N. J. (1981) A reference library of electron energy-loss spectra. In Analytical Electron Microscopy – 1981, ed. R. H. Geiss, San Francisco Press, San Francisco, CA, pp. 193–194. Updated version available (free) from the author at: Materials Science Division, Argonne National Laboratory, Illinois 60439.

    Google Scholar 

  • Leapman, R. D., Fiori, C. E., and Swyt, C. R. (1984b) Mass thickness determination by inelastic scattering in microanalysis of organic samples. In Analytical Electron Microscopy – 1984, eds. D. B. Williams and D. C. Joy, San Francisco Press, San Francisco, CA, pp. 83–88.

    Google Scholar 

  • Krivanek, O. L., Gubbens, A. J., and Dellby, N. (1991b) Developments in EELS instrumentation for spectroscopy and imaging.

    Google Scholar 

  • Brydson, R., Sauer, H., and Engel, W. (1992b) Electron energy-loss near edge structure as an analytical tool – the study of minerals. In Transmission Electron Energy Loss Spectrometry in Materials Science, eds. M. M. Disko, C. C. Ahn, and B. Fulz, The Minerals, Metals and Materials Society, Warrendale, PA, pp. 131–154.

    Google Scholar 

  • Thole, B. T., and van der Laan, G. (1988) Branching ratio in x-ray absorption spectroscopy. Phys. Rev. B 38, 3158–3171.

    Article  CAS  Google Scholar 

  • Klie, R. F., Zhao, Y., Yang, G., and Zhu, Y. (2008) High-resolution Z-contrast imaging and EELS study of functional oxide materials. Micron 36, 723–733.

    Article  CAS  Google Scholar 

  • Shindo, D., Mushashi, T., Ikematsu, Y., Murakami, Y., Nakamura, N., and Chiba, H. (2005) Characterization of DLC films by EELS and holography. Ultramicroscopy 5, 45–53.

    Google Scholar 

  • Oleshko,V. P., Murayama, M., and Howe, J. M. (2002) Use of plasmon spectroscopy to evaluate the mechanical properties of materials at the nanoscale. Microsc. Microanal. 8, 350–364.

    Article  CAS  Google Scholar 

  • Gass, M. H., Papworth, A. J., Beanland, R., Bullough, T. J., and Chalker, P. R. (2006a) Mapping the effective mass of electrons in III-V semiconductor quantum confined structures. Phys. Rev. B 73, 035312 (6 pages).

    Article  CAS  Google Scholar 

  • Riedl, T., Gemming, T., and Wetzig, K. (2006) Extraction of EELS white-line intensities of manganese compounds: Methods, accuracy, and valence sensitivity. Ultramicroscopy 106, 284–291.

    Article  CAS  Google Scholar 

  • Zhang, Z. H., Wang, X., Xu, J. B., Muller, S., Ronnig, C., and Li, Q. (2009) Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures. Nat. Nanotechnol. 4, 523–527.

    Article  CAS  Google Scholar 

  • Zhang, L., Erni, R., Verbeek, J., and Van Tenderloo, G. (2008) Retrieving the dielectric function of diamond from valence electron energy-loss spectroscopy. Phys. Rev. B 77, 195119 (7 pages).

    Article  CAS  Google Scholar 

  • Wang, J., Li, Q., Peng, L.-M., and Malac, M. (2008b) The dielectric response of the H2Ti3O7 nanotube investigated by valence electron energy loss spectroscopy. Appl. Phys. Lett. 94, 011915.

    Article  CAS  Google Scholar 

  • Bosman, M., Tang, L. J., Ye, J. D., Tan, S. T., Zhang, Y., and Keast, V. J. (2009) Nanoscale band gap spectroscopy on ZnO and GaN-based compounds with a monochromated electron microscope. Appl. Phys. Lett. 95, 101110 (3 pages).

    Article  CAS  Google Scholar 

  • Batson, P. E. (1993b) Distortion of the core exciton by the swift electron and plasmon wake in spatially resolved electron-energy-loss scattering. Phys. Rev. B 47, 6898–6910.

    Article  Google Scholar 

  • Batson, P. E. (1995) Conduction bandstructure in strained silicon by spatially resolved electron energy loss spectroscopy. Ultramicroscopy 59, 63–70.

    Article  CAS  Google Scholar 

  • Walkosz, W., Klie, R. F., Öğüt, S., Mikijelj, B., Pennycook, S. J., Pantelides, S. T., and Idrobo, J. C. (2010) Crystal-induced effects at crystal/amorphous interfaces: The case of Si3N4/SiO2. Phys. Rev. B 82, 081412 (4 pages).

    Article  CAS  Google Scholar 

  • Howie, A., Rocca, F. J., and Valdre, U. (1985) Electron beam ionization damage in p-terphenyl. Philos. Mag. B 52, 751–757.

    Article  CAS  Google Scholar 

  • Daniels, H., Brydson, R., Rand, B., and Brown, A. (2007) Investigating carbonization and graphitization using electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM). Philos. Mag. 87, 4073–4092.

    Article  CAS  Google Scholar 

  • Zobelli, A., Gloter, A., Ewels, C. P., Seifert, G., and Colliex, C. (2007) Electron knock-on cross section of carbon and boron nitride nanotubes. Phys. Rev. 75, 245402 (9 pages).

    Article  CAS  Google Scholar 

  • Kuzuo, R., Terauchi, M., Tanaka, M., Saito, Y., and Shinohara, H. (1994) Electron-energy-loss spectra of crystalline C84. Phys. Rev. B 49, 5054–5057.

    Article  CAS  Google Scholar 

  • Terauchi, M., Nishimura, S., and Iwasa, Y. (2005) High energy-resolution electron energy-loss spectroscopy study of the electronic structure of C60 polymer crystals. J. Electron Spectrosc. Relat. Phenom. 143, 167–172.

    Article  CAS  Google Scholar 

  • Schaffer, B., Grogger, W., Kothleitner, G., and Hofer, F. (2010) Comparison of EFTEM and STEM EELS plasmon imaging of gold nanoparticles in a monochromated TEM. Ultramicroscopy 110, 1087–1093.

    Article  CAS  Google Scholar 

  • Diociaiuti, M., and Paoletti, L. (1991) Structural characterization of air-oxidized chromium particles by extended energy-loss fine-structure spectroscopy. J. Microsc. 162, 279–289.

    CAS  Google Scholar 

  • Diociaiuti, M., Bascelli, A., and Paoletti, L. (1992a) Extended electron energy loss fine structure and selected area electron diffraction combined study of copper cluster oxidation. Vacuum 43, 575–581.

    Article  CAS  Google Scholar 

  • Diociaiuti, M., Picozzi, P., Santucci, S., Lozzi, L., and de Crescenzi, M. (1992b) Extended electron energy-loss fine structure and selected-area diffraction studies of small palladium clusters. J. Microsc. 166, 231–245.

    CAS  Google Scholar 

  • Bangert, U., Eberlein, T., Nair, R.R., Jones, R., Gass, M., Bleloch, A.L., Novoselov, K.S., Geim, A. and Briddon, P.R. (2008) STEM plasmon spectroscopy of free standing graphen. Phys. Status Solidi 205, 2265–2269.

    Article  CAS  Google Scholar 

  • Jiang, N., Su, D., and Spence, J. C. H. (2010) On the measurement of thickness in nanoporous materials by EELS. Ultramicroscopy 111, 62–65.

    Article  CAS  Google Scholar 

  • Rossouw, D., Couillard, M., Vickery, J., Kumacheva, E. and Botton, G. (2011) Multipolar plasmonic resonances in silver nanowire antennas imaged with subnanometer electron probe. Nano Lett 11, 1499–1504.

    Article  CAS  Google Scholar 

  • Reimer, L., ed. (1995) Energy-Filtering Transmission Electron Microscopy. Springer Series in Optical Sciences, Springer, Heidelberg, Vol. 71, pp. 1–424.

    Google Scholar 

  • Cockayne, D. J. H., McKenzie, D., and Muller, D. (1991) Electron diffraction of amorphous thin films using PEELS. Microsc. Microanal. Microstruct. 2, 359–366.

    Article  CAS  Google Scholar 

  • Pearce-Percy, H. T. (1976) An energy analyser for a CTEM/STEM. J. Phys. E 9, 135–138.

    Article  Google Scholar 

  • Warbichler, P., Hofer, F., Hofer, P., and Letofsky, E. (2006) On the application of energy-filtering TEM in materials science: III. Precipitates in steel. Micron 29, 63–72.

    Article  Google Scholar 

  • Yakovlev, S., Misra, M., Shi, S., and Libera, M. (2009) Specimen thickness dependence of hydrogen evolution during cryo-transmission electron microscopy of hydrated soft materials. J. Microsc. 236, 174–179.

    Article  CAS  Google Scholar 

  • van Benthem, K., French, R. H., Sigle, W., Elsasser, C., and Ruhle, M. (2001) Valence electron energy loss study of Fe-doped SrTiO3 and a ∑13 boundary: Electronic structure and dispersion forces. Ultramicroscopy 86, 303–318.

    Article  Google Scholar 

  • Cosgriff, E. C., Oxley, M. P., Allen, L. J., and Pennycook, S. J. (2005) The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope. Ultramicroscopy 102, 317–326.

    Article  CAS  Google Scholar 

  • Xin, H. L., Kourkoutis, L. F., Mundy, J. A., Zheng, H., and Muller, D. A. (2010) Atomic-scale EELS maps: It’s not resolution, but contrast. Microsc. Microanal. 16 (Suppl 2), 242–243.

    Article  CAS  Google Scholar 

  • Sader, K., Schaffer, B., Vaughan, G., Brydson, R., Brown, A., and Bleloch, A. (2010) Smart acquisition EELS. Ultramicroscopy 110, 998–1003.

    Article  CAS  Google Scholar 

  • Suenaga, K., Sato, Y., Liu, Z., Kataura, H., Okazaki, T., Kimoto, K., Sawada, H., Sasaki, T., Omoto, K., Tomita, T., Kaneyama, T., and Kondo, Y. (2009) Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nat. Chem. 1, 415–418.

    Article  CAS  Google Scholar 

  • Wang, F., Egerton, R. F., Malac, M., McLeod, R. A., and Moreno, M. S. (2008a) The spatial resolution of electron energy loss and x-ray absorption fine structure. J. Appl. Phys. 104, 034906 (8 pages).

    Article  CAS  Google Scholar 

  • Stavitski, E., and de Groot, M. F. (2010) The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 41, 687–694.

    Article  CAS  Google Scholar 

  • de Groot, F. M. F., and Kotani, A. (2008) Core level spectroscopy of solids. In Volume b of Advances in Condensed Matter Science, 5 CRC Press, Boca Raton, FL.

    Google Scholar 

  • Wang, Z. L., Bentley, J., and Evans, N. D. (2000) Valence state mapping of cobalt and manganese using near-edge fine structures. Micron 31, 355–362.

    Article  CAS  Google Scholar 

  • Koshino, M., Kurata, H., Isoda, S., and Kobayashi, T. (2000) Branching ratio and L2 + L3 intensities of 3d-transition metals in phthalocyanines and the amine complexes. Micron 31, 373–380.

    Article  CAS  Google Scholar 

  • Schattschneider, P., ed. (2011) Linear and Chiral Dichroism in the Electron Microscope, PanStanford Publishing, Singapore. ISBN 9789814267489.

    Google Scholar 

  • Schattschneider, P., Rubino, S., Stöger-Pollach, M., Hebert, C., Rusz, J., Calmels, L., and Snoeck, E. (2008) Energy loss magnetic chiral dichroism. J. Appl. Phys. 103, 07D931 (6 pages).

    Article  CAS  Google Scholar 

  • Aronova, M. A., Kim, Y. C., Pivovarova, N. B., Andrews, S. B., and Leapman, R. D. (2009) Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures. Ultramicroscopy 109, 201–212.

    Article  CAS  Google Scholar 

  • Bonnet, R. A., and Nuzillard, D. (2005) Independent component analysis: A new possibility for analysing series of electron energy loss spectra. Ultramicroscopy 102, 327–337.

    Article  CAS  Google Scholar 

  • Johnson, D. E. (1972) The interactions of 25 keV electrons with guanine and cytosine. Radiat. Res. 49, 63–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.F. Egerton .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Egerton, R. (2011). TEM Applications of EELS. In: Electron Energy-Loss Spectroscopy in the Electron Microscope. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9583-4_5

Download citation

Publish with us

Policies and ethics