Skip to main content

A Comparison of Some Recent Regularity Conditions for Fenchel Duality

  • Chapter
  • First Online:
Book cover Fixed-Point Algorithms for Inverse Problems in Science and Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 49))

  • 5265 Accesses

Abstract

This article provides an overview on regularity conditions for Fenchel duality in convex optimization. Our attention is focused, on the one hand, on three generalized interior-point regularity conditions expressed by means of the quasi interior and of the quasi-relative interior and, on the other hand, on two closedness-type conditions that have been recently introduced in the literature. We discuss how they do relate to each other, but also to several other classical ones and illustrate these investigations by numerous examples.

AMS 2010 Subject Classification: 46N10, 42A50

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attouch, H., Brézis, H.: Duality for the sum of convex functions in general Banach spaces. In: J.A. Barroso (ed.) Aspects of Mathematics and Its Applications, North-Holland Publishing Company, Amsterdam, pp. 125–133 (1986)

    Google Scholar 

  2. Borwein, J.M., Goebel, R.: Notions of relative interior in Banach spaces. J. Math. Sci. (New York) 115, 2542–2553 (2003)

    Google Scholar 

  3. Borwein, J.M., Lewis, A.S.: Partially finite convex programming, part I: Quasi relative interiors and duality theory. Math. Programming 57, 15–48 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borwein, J.M., Jeyakumar, V., Lewis, A.S., Wolkowicz, H.: Constrained approximation via convex programming (1988). Preprint, University of Waterloo

    Google Scholar 

  5. Borwein, J.M., Lucet, Y., Mordukhovich, B.: Compactly epi-Lipschitzian convex sets and functions in normed spaces. J. Convex Anal. 7, 375–393 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Boţ, R.I.: Conjugate Duality in Convex Optimization, Lecture Notes in Economics and Mathematical Systems, vol. 637. Springer, Berlin (2010)

    Google Scholar 

  7. Boţ, R.I., Wanka, G.: A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces. Nonlinear Anal. 64, 2787–2804 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boţ, R.I., Csetnek, E.R., Wanka, G.: Regularity conditions via quasi-relative interior in convex programming. SIAM J. Optim. 19, 217–233 (2008)

    Article  MathSciNet  Google Scholar 

  9. Boţ, R.I., Csetnek, E.R., Moldovan, A.: Revisiting some duality theorems via the quasirelative interior in convex optimization. J. Optim. Theory Appl. 139, 67–84 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burachik, R.S., Jeyakumar, V.: A new geometric condition for Fenchel’s duality in infinite dimensional spaces. Math. Programming 104, 229–233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burachik, R.S., Jeyakumar, V., Wu, Z.-Y.: Necessary and sufficient conditions for stable conjugate duality. Nonlinear Anal. 64, 1998–2006 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cammaroto, F., Di Bella, B.: Separation theorem based on the quasirelative interior and application to duality theory. J. Optim. Theory Appl. 125, 223–229 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cammaroto, F., Di Bella, B.: On a separation theorem involving the quasi-relative interior. Proc. Edinburgh Math. Soc. (2) 50, 605–610 (2007)

    Google Scholar 

  14. Csetnek, E.R.: Overcoming the failure of the classical generalized interior-point regularity conditions in convex optimization. Applications of the duality theory to enlargements of maximal monotone operators. Ph.D. Thesis, Chemnitz University of Technology, Germany (2009)

    Google Scholar 

  15. Daniele, P., Giuffrè, S.: General infinite dimensional duality and applications to evolutionary network equilibrium problems. Optim. Lett. 1, 227–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daniele, P., Giuffrè, S., Idone, G., Maugeri, A.: Infinite dimensional duality and applications. Math. Ann. 339, 221–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gowda, M.S., Teboulle, M.: A comparison of constraint qualifications in infinite-dimensional convex programming. SIAM J. Control Optim. 28, 925–935 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Holmes, R.B.: Geometric Functional Analysis and its Applications. Springer, Berlin (1975)

    MATH  Google Scholar 

  19. Li, C., Fang, D., López, G., López, M.A.: Stable and total Fenchel duality for convex optimization problems in locally convex spaces. SIAM J. Optim. 20, 1032–1051 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Limber, M.A., Goodrich, R.K.: Quasi interiors, Lagrange multipliers, and L p spectral estimation with lattice bounds. J. Optim. Theory Appl. 78, 143–161 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rockafellar, R.T.: Conjugate duality and optimization. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics 16, Society for Industrial and Applied Mathematics, Philadelphia (1974)

    Google Scholar 

  22. Simons, S.: From Hahn-Banach to Monotonicity, Lecture Notes in Mathematics, vol. 1693. Springer, New York (2008)

    Google Scholar 

  23. Tanaka, T., Kuroiwa, D.: The convexity of A and B assures intA + B = int(A + B). Appl. Math. Lett. 6, 83–86 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zălinescu, C.: Solvability results for sublinear functions and operators. Math. Methods Oper. Res. 31, A79–A101 (1987)

    Google Scholar 

  25. Zălinescu, C.: A comparison of constraint qualifications in infinite-dimensional convex programming revisited. J. Austral. Math. Soc. Ser. B 40, 353–378 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, New Jersey (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The research of the first author was partially supported by DFG (German Research Foundation), project WA 922/1-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Ioan Boţ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boţ, R.I., Csetnek, E.R. (2011). A Comparison of Some Recent Regularity Conditions for Fenchel Duality. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications(), vol 49. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9569-8_7

Download citation

Publish with us

Policies and ethics