Skip to main content

Characterization of Novel Neuroprotective Lipid Analogues for the Treatment of Stroke

  • Chapter
  • First Online:
  • 1264 Accesses

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

Epidemiological, clinical, and biochemical studies have shown that various types of dietary fatty acids can modify the risk of stroke suggesting that fatty acids might be a good starting point for the development of new neuroprotective compounds for the treatment of stroke. We took two distinct approaches to the modification of fatty acids for their use as neuroprotective compounds. In the first approach, we made simplified forms of the ganglioside GM1 that contain a saturated, unsaturated, or cyclic fatty acid linked via an amide bond to a hydrophilic moiety. In the second approach, we directly linked fatty acids to the carboxylic acid bioisostere 1,2,4-oxadiazolidine-3,5-dione. Bioisosteres act as biomimetics of the parent group with respect to key physicochemical properties but provide additional, potentially more beneficial properties. We tested these new compounds in two distinct models of nerve cell death that mimic several different aspects of ischemic injury and death. We found that only a small subset of the tested compounds were effective in both neuroprotection assays, suggesting that these may be the best leads for novel therapeutic compounds for stroke. Interestingly, their neuroprotective effects appear to be mediated by distinct mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ingall T. Stroke-incidence, mortality and risk. J Insur Med. 2004;36:143–52.

    PubMed  Google Scholar 

  2. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–7.

    Article  PubMed  CAS  Google Scholar 

  3. McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F. Cellular uptake and intracellular trafficking of long chain fatty acids. J Lipid Res. 1999;40:1371–83.

    PubMed  CAS  Google Scholar 

  4. Belayev L, Khoutorova L, Atkins KD, Bazan NG. Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke. 2009;40:3121–6.

    Article  PubMed  CAS  Google Scholar 

  5. Nguemeni C, Delplanque B, Rovere C, Simon-Rousseau N, Gandin C, Agnani G, Nahon JL, Heurteaux C, Blondeau N. Dietary supplementation of alpha-linoleic acid in an enriched rapeseed oil diet protects from stroke. Pharmacol Res. 2010;61:226–33.

    Article  PubMed  CAS  Google Scholar 

  6. Bazan NG. Lipid signaling in neural plasticity, brain repair and neuroprotection. Mol Neurobiol. 2005;32:89–103.

    Article  PubMed  CAS  Google Scholar 

  7. Tholstrup T, Marckmann P, Jespersen J, Sandstrom B. Fat high in stearic acid favorably affects blood lipids and factor VII coagulant activity in comparison with fats high in palmitic acid or high in myristic and lauric acids. Am J Clin Nutr. 1994;59:371–7.

    PubMed  CAS  Google Scholar 

  8. Wang Z-J, Li G-M, Tang W-L, Yin M. Neuroprotective effects of stearic acid against toxicity of oxygen/glucose deprivation or glutamate on rat cortical or hippocampal slices. Acta Pharmacol Sin. 2006;27:145–50.

    Article  PubMed  CAS  Google Scholar 

  9. Hadjiconstantinou M, Neff NH. GM1 ganglioside: in vivo and in vitro trophic actions on central neurotransmitter systems. J Neurochem. 1998;70:1335–45.

    Article  PubMed  CAS  Google Scholar 

  10. Biraboneye AC, Madonna S, Laras Y, Krantic S, Maher P, Kraus J-L. Potential neuroprotective drugs in cerebral ischemia: new saturated and polyunsaturated lipids coupled to hydrophilic moieties: synthesis and biological activity. J Med Chem. 2009;52:4358–69.

    Article  PubMed  CAS  Google Scholar 

  11. Biraboneye AC, Madonna S, Maher P, Kraus J-L. Neuroprotective effects of N-alkyl-­1,2,4-oxadiazolidine-3,5-diones and their corresponding synthetic intermediates N-alkylhydroxylamines and N-1-alkyl-3-carbonyl-1-hydroxyureas against in vitro cerebral ischemia. ChemMedChem. 2010;5:79–85.

    Article  PubMed  CAS  Google Scholar 

  12. Lipton P. Ischemic death in brain neurons. Physiol Rev. 1999;79:1431–568.

    PubMed  CAS  Google Scholar 

  13. Green AR, Shuaib A. Therapeutic strategies for the treatment of stroke. Drug Discov Today. 2006;11:681–93.

    Article  PubMed  CAS  Google Scholar 

  14. Tan S, Schubert D, Maher P. Oxytosis: a novel form of programmed cell death. Curr Top Med Chem. 2001;1:497–506.

    Article  PubMed  CAS  Google Scholar 

  15. Miyamoto M, Murphy TH, Schnaar RL, Coyle JT. Antioxidants protect against glutamate-induced cytotoxicity in a neuronal cell line. J Pharmacol Exp Ther. 1989;250:1132–40.

    PubMed  CAS  Google Scholar 

  16. Schubert D, Kimura H, Maher P. Growth factors and vitamin E modify neuronal glutamate toxicity. Proc Natl Acad Sci U S A. 1992;89:8264–7.

    Article  PubMed  CAS  Google Scholar 

  17. Davis JB, Maher P. Protein kinase C activation inhibits glutamate-induced cytotoxicity in a neuronal cell lines. Brain Res. 1994;652:169–73.

    Article  PubMed  CAS  Google Scholar 

  18. Maher P, Davis JB. The role of monoamine metabolism in oxidative glutamate toxicity. J Neurosci. 1996;16:6394–401.

    PubMed  CAS  Google Scholar 

  19. Murphy TH, Baraban JM. Glutamate toxicity in immature cortical neurons precedes development of glutamate receptor currents. Brain Res. 1990;57:146–50.

    Article  CAS  Google Scholar 

  20. Tan S, Sagara Y, Liu Y, Maher P, Schubert D. The regulation of reactive oxygen species production during programmed cell death. J Cell Biol. 1998;141:1423–32.

    Article  PubMed  CAS  Google Scholar 

  21. Li Y, Maher P, Schubert D. Requirement for cGMP in nerve cell death caused by glutathione depletion. J Cell Biol. 1997;139:1317–24.

    Article  PubMed  CAS  Google Scholar 

  22. Tan S, Wood M, Maher P. Oxidative stress in nerve cells induces a form of cell death with characteristics of both apoptosis and necrosis. J Neurochem. 1998;71:95–105.

    Article  PubMed  CAS  Google Scholar 

  23. Ishige K, Schubert D, Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med. 2001;30:433–46.

    Article  PubMed  CAS  Google Scholar 

  24. Ishige K, Chen Q, Sagara Y, Schubert D. The activation of dopamine D4 receptors inhibits oxidative stress-induced nerve cell death. J Neurosci. 2001;21:6069–76.

    PubMed  CAS  Google Scholar 

  25. Maher P. How protein kinase C activation protects nerve cells from oxidative stress-induced cell death. J Neurosci. 2001;21:2929–38.

    PubMed  CAS  Google Scholar 

  26. Sagara Y, Ishige K, Tsai C, Maher P. Tyrphostins protect neuronal cells from oxidative stress. J Biol Chem. 2002;277:36204–15.

    Article  PubMed  CAS  Google Scholar 

  27. Lewerenz J, Letz J, Methner A. Activation of stimulatory heteromeric G proteins increases glutathione and protects neuronal cells against oxidative stress. J Neurochem. 2003;87:522–31.

    Article  PubMed  CAS  Google Scholar 

  28. Sahin M, Saxena A, Jost P, Lewerenz J, Methner A. Induction of Bcl-2 by functional regulation of G-protein coupled receptors protects from oxidative glutamate toxicity. Free Radic Res. 2006;40:1113–23.

    Article  PubMed  CAS  Google Scholar 

  29. Schubert D, Piasecki D. Oxidative glutamate toxicity can be a part of the excitotoxicity cascade. J Neurosci. 2001;21:7455–62.

    PubMed  CAS  Google Scholar 

  30. Winkler BS, Sauer MW, Starnes CA. Modulation of the Pasteur effect in retinal cells: implications for understanding compensatory metabolic mechanisms. Exp Eye Res. 2003;76:715–23.

    Article  PubMed  CAS  Google Scholar 

  31. Reshef A, Sperling O, Zoref-Shani E. Activation and inhibition of protein kinase C protect rat neuronal cultures against ischemia-reperfusion insult. Neurosci Lett. 1997;238:37–40.

    Article  PubMed  CAS  Google Scholar 

  32. Sperling O, Bromberg Y, Oelsner H, Zoref-Shani E. Reactive oxygen species play an important role in iodoacetate-induced neurotoxicity in primary rat neuronal cultures and in differentiated PC12 cells. Neurosci Lett. 2003;351:137–40.

    Article  PubMed  CAS  Google Scholar 

  33. Rego AC, Areias FM, Santos MS, Oliveira CR. Distinct glycolysis inhibitors determine retinal cell sensitivity to glutamate-mediated injury. Neurochem Res. 1999;24:351–8.

    Article  PubMed  CAS  Google Scholar 

  34. Sigalov E, Fridkin M, Brenneman DE, Gozes I. VIP-related protection against iodoacetate toxicity in pheochromocytoma (PC12) cells: a model for ischemic/hypoxic injury. J Mol Neurosci. 2000;15:147–54.

    Article  PubMed  CAS  Google Scholar 

  35. Reiner PB, Laycock AG, Doll CJ. A pharmacological model of ischemia in the hippocampal slice. Neurosci Lett. 1990;119:175–8.

    Article  PubMed  CAS  Google Scholar 

  36. Kokiko ON, Hamm RJ. A review of pharmacological treatments used in experimental models of traumatic brain injury. Brain Inj. 2007;21:259–74.

    Article  PubMed  Google Scholar 

  37. Taylor BM, Fleming WE, Benjamin CW, Wu Y, Mathews R, Sun FF. The mechanism of cytoprotective action of lazaroids I: inhibition of reactive oxygen species formation and lethal cell injury during periods of energy depletion. J Pharmacol Exp Ther. 1996;276:1224–31.

    PubMed  CAS  Google Scholar 

  38. Maher P, Salgado KF, Zivin JA, Lapchak PA. A novel approach to screening for new neuroprotective compounds for the treatment of stroke. Brain Res. 2007;1173:117–25.

    Article  PubMed  CAS  Google Scholar 

  39. Lapchak PA, Maher P, Schubert D, Zivin JA. Baicalein, an antioxidant 12/15-lipoxygenase inhibitor improves clinical rating scores following multiple infarct embolic strokes. Neuroscience. 2007;150:585–91.

    Article  PubMed  CAS  Google Scholar 

  40. Lapchak PA, Schubert DR, Maher PA. Delayed treatment with a novel neurotrophic compound reduces behavioral deficits in rabbit ischemic stroke. J Neurochem. 2011;116:122–31.

    Article  PubMed  CAS  Google Scholar 

  41. Manfredini S, Pavan B, Ventuani S, Scaglianti M, Compagnone D, Biodi C, Scatturin A, Tanganelli S, Ferraro L, Prasad P, Dalpiaz A. Design, synthesis and activity of ascorbic acid prodrugs of nipecotic, kynurenic and diclophenamic acids, liable to increase neurotropic activity. J Med Chem. 2002;45:559–62.

    Article  PubMed  CAS  Google Scholar 

  42. Laras Y, Quelever G, Carino C, Pietrancosta N, Sheha M, Bihel F, Wolfe MS, Kraus J-L. Substituted thiazolamide coupled to a redox delivery system: a new gamma-secretase inhibitor with enhanced pharmacokinetic profile. Org Biomol Chem. 2005;3:612–8.

    Article  PubMed  CAS  Google Scholar 

  43. Laras Y, Sheha M, Pietrancosta N, Kraus J-L. Thiazolamide-ascorbic acid conjugate: a gamma secretase inhibitor with enhanced blood-brain barrier permeation. Aust J Chem. 2007;60:128–32.

    Article  CAS  Google Scholar 

  44. Mehta SL, Manhas N, Rahubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54:34–66.

    Article  PubMed  CAS  Google Scholar 

  45. Dugan LL, Creedon DJ, Johnson EM, Holtzman DM. Rapid suppression of free radical formation by nerve growth factor involves the mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A. 1997;94:4086–91.

    Article  PubMed  CAS  Google Scholar 

  46. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and transcription-independent mechanisms. Science. 1999;286:1358–62.

    Article  PubMed  CAS  Google Scholar 

  47. Hetman M, Xia Z. Signaling pathways mediating anti-apoptotic action of neurotrophins. Acta Neurobiol Exp (Wars). 2000;60:531–45.

    CAS  Google Scholar 

  48. Zhao H, Sapolsky RM, Steinberg GK. Phosphoinositide-3-kinase/Akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol. 2006;34:249–70.

    Article  PubMed  CAS  Google Scholar 

  49. Liu C, Wu J, Xu K, Cai F, Gu J, Ma L, Chen J. Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway. J Neurochem. 2010;112:1500–12.

    Article  PubMed  CAS  Google Scholar 

  50. Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenbeele P. Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med. 2008;8:207–20.

    Article  PubMed  CAS  Google Scholar 

  51. Strokin M, Chechneva O, Reymann KG, Reiser G. Neuroprotection of rat hippocampal slices exposed to oxygen-glucose deprivation by enrichment with docosahexaenoic acid and by inhibition of hydrolysis of docosahexaenoic acid-containing phospholipids by calcium independent phospholipase A2. Neuroscience. 2006;140:547–53.

    Article  PubMed  CAS  Google Scholar 

  52. Agus DB, Gambhir SS, Pardridge WM, Spielholz C, Baselga J, Vera JC, Golde DW. Vitamin C crosses the blood-brain barrier in the oxidized form through glucose transporters. J Clin Invest. 1997;100:2842–8.

    Article  PubMed  CAS  Google Scholar 

  53. Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang YX, Brubaker RF, Hediger MA. A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature. 1999;399:70–5.

    Article  PubMed  CAS  Google Scholar 

  54. Blixt J. Patent application 09/380458; 1999.

    Google Scholar 

  55. Lewerenz J, Albrecht P, Tien ML, Henke N, Karumbayaram S, Kornblum HI, Wiedua-Pazos M, Schubert D, Maher P, Methner A. Induction of Nrf2 and xCT and involved in the action of the neuroprotective antibiotic ceftriazone in vitro. J Neurochem. 2009;111:332–43.

    Article  PubMed  CAS  Google Scholar 

  56. Maher P. A comparison of the neurotrophic activities of the flavonoid fisetin and some of its derivatives. Free Radic Res. 2006;40:1105–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Maher PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maher, P., Biraboneye, A.C., Kraus, JL. (2012). Characterization of Novel Neuroprotective Lipid Analogues for the Treatment of Stroke. In: Lapchak, P., Zhang, J. (eds) Translational Stroke Research. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9530-8_19

Download citation

Publish with us

Policies and ethics